Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319452617> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4319452617 abstract "The purpose of image steganalysis is to determine whether the carrier image contains hidden information or not. Since JEPG is the most commonly used image format over social networks, steganalysis in JPEG images is also the most urgently needed to be explored. However, in order to detect whether secret information is hidden within JEPG images, the majority of existing algorithms are designed in conjunction with the popular computer vision related networks, without considering the key characteristics appeared in image steganalysis. It is crucial that the steganographic signal, as an extremely weak signal, can be enhanced during its representation learning process. Motivated by this insight, in this paper, we introduce a novel representation learning algorithm for JPEG steganalysis that is mainly consisting of a graph attention learning module and a feature enhancement module. The graph attention learning module is designed to avoid global feature loss caused by the local feature learning of convolutional neural network and reliance on depth stacking to extend the perceptual domain. The feature enhancement module is applied to prevent the stacking of convolutional layers from weakening the steganographic information. In addition, pretraining as a way to initialize the network weights with a large-scale dataset is utilized to enhance the ability of the network to extract discriminative features. We advocate pretraining with ALASKA2 for the model trained with BOSSBase+BOWS2. The experimental results indicate that the proposed algorithm outperforms previous arts in terms of detection accuracy, which has verified the superiority and applicability of the proposed work." @default.
- W4319452617 created "2023-02-09" @default.
- W4319452617 creator A5014476053 @default.
- W4319452617 creator A5049733139 @default.
- W4319452617 creator A5066201147 @default.
- W4319452617 date "2023-02-04" @default.
- W4319452617 modified "2023-09-29" @default.
- W4319452617 title "JPEG Steganalysis Based on Steganographic Feature Enhancement and Graph Attention Learning" @default.
- W4319452617 doi "https://doi.org/10.48550/arxiv.2302.02276" @default.
- W4319452617 hasPublicationYear "2023" @default.
- W4319452617 type Work @default.
- W4319452617 citedByCount "0" @default.
- W4319452617 crossrefType "posted-content" @default.
- W4319452617 hasAuthorship W4319452617A5014476053 @default.
- W4319452617 hasAuthorship W4319452617A5049733139 @default.
- W4319452617 hasAuthorship W4319452617A5066201147 @default.
- W4319452617 hasBestOaLocation W43194526171 @default.
- W4319452617 hasConcept C107368093 @default.
- W4319452617 hasConcept C108801101 @default.
- W4319452617 hasConcept C115961682 @default.
- W4319452617 hasConcept C119857082 @default.
- W4319452617 hasConcept C132525143 @default.
- W4319452617 hasConcept C138885662 @default.
- W4319452617 hasConcept C153180895 @default.
- W4319452617 hasConcept C154945302 @default.
- W4319452617 hasConcept C198751489 @default.
- W4319452617 hasConcept C2776401178 @default.
- W4319452617 hasConcept C41008148 @default.
- W4319452617 hasConcept C41895202 @default.
- W4319452617 hasConcept C52622490 @default.
- W4319452617 hasConcept C59404180 @default.
- W4319452617 hasConcept C80444323 @default.
- W4319452617 hasConcept C81363708 @default.
- W4319452617 hasConcept C97931131 @default.
- W4319452617 hasConceptScore W4319452617C107368093 @default.
- W4319452617 hasConceptScore W4319452617C108801101 @default.
- W4319452617 hasConceptScore W4319452617C115961682 @default.
- W4319452617 hasConceptScore W4319452617C119857082 @default.
- W4319452617 hasConceptScore W4319452617C132525143 @default.
- W4319452617 hasConceptScore W4319452617C138885662 @default.
- W4319452617 hasConceptScore W4319452617C153180895 @default.
- W4319452617 hasConceptScore W4319452617C154945302 @default.
- W4319452617 hasConceptScore W4319452617C198751489 @default.
- W4319452617 hasConceptScore W4319452617C2776401178 @default.
- W4319452617 hasConceptScore W4319452617C41008148 @default.
- W4319452617 hasConceptScore W4319452617C41895202 @default.
- W4319452617 hasConceptScore W4319452617C52622490 @default.
- W4319452617 hasConceptScore W4319452617C59404180 @default.
- W4319452617 hasConceptScore W4319452617C80444323 @default.
- W4319452617 hasConceptScore W4319452617C81363708 @default.
- W4319452617 hasConceptScore W4319452617C97931131 @default.
- W4319452617 hasLocation W43194526171 @default.
- W4319452617 hasOpenAccess W4319452617 @default.
- W4319452617 hasPrimaryLocation W43194526171 @default.
- W4319452617 hasRelatedWork W1968515670 @default.
- W4319452617 hasRelatedWork W2055625960 @default.
- W4319452617 hasRelatedWork W2327530886 @default.
- W4319452617 hasRelatedWork W2507989420 @default.
- W4319452617 hasRelatedWork W2546942002 @default.
- W4319452617 hasRelatedWork W2805177060 @default.
- W4319452617 hasRelatedWork W2905846897 @default.
- W4319452617 hasRelatedWork W2944488608 @default.
- W4319452617 hasRelatedWork W2959352717 @default.
- W4319452617 hasRelatedWork W2982078027 @default.
- W4319452617 isParatext "false" @default.
- W4319452617 isRetracted "false" @default.
- W4319452617 workType "article" @default.