Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319454099> ?p ?o ?g. }
- W4319454099 abstract "We consider the Nusselt–Rayleigh number problem of Rayleigh–Bénard convection and make the hypothesis that the velocity and thermal boundary layer widths, $delta _u$ and $delta _T$ , in the absence of a strong mean flow are controlled by the dissipation scales of the turbulence outside the boundary layers and, therefore, are of the order of the Kolmogorov and Batchelor scales, respectively. Under this assumption, we derive $Nu sim Ra^{1/3}$ in the high $Ra$ limit, independent of the Prandtl number, $delta _T/L sim Ra^{-1/3}$ and $delta _u/L sim Ra^{-1/3} Pr^{1/2}$ , where $L$ is the height of the convection cell. The scaling relations are valid as long as the Prandtl number is not too far from unity. For $Pr sim 1$ , we make a more general ansatz, $delta _u sim nu ^{alpha }$ , where $nu$ is the kinematic viscosity and assume that the dissipation scales as $sim u^3/L$ , where $u$ is a characteristic turbulent velocity. Under these assumptions we show that $Nu sim Ra^{alpha /(3-alpha )}$ , implying that $Nu sim Ra^{1/5}$ if $delta _u$ were scaling as in a Blasius boundary layer and $Nu sim Ra^{1/2}$ (with some logarithmic correction) if it were scaling as in a standard turbulent shear boundary layer. It is argued that the boundary layers will retain the intermediate scaling $alpha = 3/4$ in the limit of high $Ra$ ." @default.
- W4319454099 created "2023-02-09" @default.
- W4319454099 creator A5010765079 @default.
- W4319454099 date "2023-02-09" @default.
- W4319454099 modified "2023-10-18" @default.
- W4319454099 title "Scaling in Rayleigh–Bénard convection" @default.
- W4319454099 cites W1526160613 @default.
- W4319454099 cites W1963592156 @default.
- W4319454099 cites W1976846431 @default.
- W4319454099 cites W1977822118 @default.
- W4319454099 cites W1980996293 @default.
- W4319454099 cites W1983752545 @default.
- W4319454099 cites W1993324282 @default.
- W4319454099 cites W1994212613 @default.
- W4319454099 cites W2009227037 @default.
- W4319454099 cites W2020255697 @default.
- W4319454099 cites W2025963635 @default.
- W4319454099 cites W2029919516 @default.
- W4319454099 cites W2036716479 @default.
- W4319454099 cites W2039231687 @default.
- W4319454099 cites W2045083252 @default.
- W4319454099 cites W2053256450 @default.
- W4319454099 cites W2061815382 @default.
- W4319454099 cites W2064892739 @default.
- W4319454099 cites W2066979449 @default.
- W4319454099 cites W2072830126 @default.
- W4319454099 cites W2074583971 @default.
- W4319454099 cites W2077474646 @default.
- W4319454099 cites W2088485833 @default.
- W4319454099 cites W2090699089 @default.
- W4319454099 cites W2095460514 @default.
- W4319454099 cites W2097253071 @default.
- W4319454099 cites W2101312045 @default.
- W4319454099 cites W2121447637 @default.
- W4319454099 cites W2122605634 @default.
- W4319454099 cites W2126467964 @default.
- W4319454099 cites W2131852780 @default.
- W4319454099 cites W2132531593 @default.
- W4319454099 cites W2133904834 @default.
- W4319454099 cites W2145200194 @default.
- W4319454099 cites W2156660145 @default.
- W4319454099 cites W2165849387 @default.
- W4319454099 cites W2214610492 @default.
- W4319454099 cites W2330547927 @default.
- W4319454099 cites W2461479561 @default.
- W4319454099 cites W2605048533 @default.
- W4319454099 cites W2606599709 @default.
- W4319454099 cites W3014006463 @default.
- W4319454099 cites W3019595708 @default.
- W4319454099 cites W3047257450 @default.
- W4319454099 cites W3104649115 @default.
- W4319454099 cites W3125690735 @default.
- W4319454099 cites W3190151035 @default.
- W4319454099 cites W323536346 @default.
- W4319454099 cites W4213447689 @default.
- W4319454099 cites W4232802490 @default.
- W4319454099 cites W4295073601 @default.
- W4319454099 doi "https://doi.org/10.1017/jfm.2023.46" @default.
- W4319454099 hasPublicationYear "2023" @default.
- W4319454099 type Work @default.
- W4319454099 citedByCount "3" @default.
- W4319454099 countsByYear W43194540992023 @default.
- W4319454099 crossrefType "journal-article" @default.
- W4319454099 hasAuthorship W4319454099A5010765079 @default.
- W4319454099 hasBestOaLocation W43194540991 @default.
- W4319454099 hasConcept C106836276 @default.
- W4319454099 hasConcept C10899652 @default.
- W4319454099 hasConcept C111603439 @default.
- W4319454099 hasConcept C121332964 @default.
- W4319454099 hasConcept C130230704 @default.
- W4319454099 hasConcept C132812236 @default.
- W4319454099 hasConcept C182748727 @default.
- W4319454099 hasConcept C196558001 @default.
- W4319454099 hasConcept C2524010 @default.
- W4319454099 hasConcept C33923547 @default.
- W4319454099 hasConcept C37914503 @default.
- W4319454099 hasConcept C54791560 @default.
- W4319454099 hasConcept C57879066 @default.
- W4319454099 hasConcept C72687893 @default.
- W4319454099 hasConcept C99844830 @default.
- W4319454099 hasConceptScore W4319454099C106836276 @default.
- W4319454099 hasConceptScore W4319454099C10899652 @default.
- W4319454099 hasConceptScore W4319454099C111603439 @default.
- W4319454099 hasConceptScore W4319454099C121332964 @default.
- W4319454099 hasConceptScore W4319454099C130230704 @default.
- W4319454099 hasConceptScore W4319454099C132812236 @default.
- W4319454099 hasConceptScore W4319454099C182748727 @default.
- W4319454099 hasConceptScore W4319454099C196558001 @default.
- W4319454099 hasConceptScore W4319454099C2524010 @default.
- W4319454099 hasConceptScore W4319454099C33923547 @default.
- W4319454099 hasConceptScore W4319454099C37914503 @default.
- W4319454099 hasConceptScore W4319454099C54791560 @default.
- W4319454099 hasConceptScore W4319454099C57879066 @default.
- W4319454099 hasConceptScore W4319454099C72687893 @default.
- W4319454099 hasConceptScore W4319454099C99844830 @default.
- W4319454099 hasLocation W43194540991 @default.
- W4319454099 hasOpenAccess W4319454099 @default.
- W4319454099 hasPrimaryLocation W43194540991 @default.
- W4319454099 hasRelatedWork W1967292267 @default.
- W4319454099 hasRelatedWork W1979819855 @default.