Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319454367> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4319454367 abstract "The global art has experienced a steady growth to tens of billion dollars in annual sales. The huge profits behind art trades unfortunately have been largely overlooked and rarely been studied in most of the machine learning and recommendation system (RS) research. As a popular Deep Metric Learning (DML) model, the Siamese Neural Network (SNN) has been widely used in music and other e-commerce RS, but not been used in art recommendation tasks. In this paper we propose an art similarity metric with SNN, and based on which built a content-based art RS, followed by clustering for reducing comparison numbers. Performance evaluation of the proposed SNN-based art RS has been conducted, in comparison with our original, simpler model basing on cosine similarity. Results shows that the SNN-based visual art RS performs significantly better in every experiment subgroup, is more robust with strong resistance to overfitting and confusion. Additional experiments show that it is nontrivial to further improve these recommendation results. To the best of our knowledge, this is the first visually-aware RS that took advantage of both SNN and content-based recommendation framework in visual art recommendation. We believe that this work opens wide opportunities for applying machine-learning and deep-learning techniques in the exciting area of visual art recommendation." @default.
- W4319454367 created "2023-02-09" @default.
- W4319454367 creator A5019298277 @default.
- W4319454367 creator A5021884742 @default.
- W4319454367 creator A5068176076 @default.
- W4319454367 date "2023-01-03" @default.
- W4319454367 modified "2023-09-27" @default.
- W4319454367 title "Siamese Neural Networks for Content-based Visual Art Recommendation" @default.
- W4319454367 cites W2809748756 @default.
- W4319454367 cites W2883192318 @default.
- W4319454367 cites W2963655167 @default.
- W4319454367 cites W2964287480 @default.
- W4319454367 cites W2969656782 @default.
- W4319454367 cites W3091489288 @default.
- W4319454367 cites W3102249200 @default.
- W4319454367 cites W3199269835 @default.
- W4319454367 cites W3199787416 @default.
- W4319454367 cites W3200249384 @default.
- W4319454367 cites W3201367038 @default.
- W4319454367 cites W3201591198 @default.
- W4319454367 doi "https://doi.org/10.1109/imcom56909.2023.10035645" @default.
- W4319454367 hasPublicationYear "2023" @default.
- W4319454367 type Work @default.
- W4319454367 citedByCount "0" @default.
- W4319454367 crossrefType "proceedings-article" @default.
- W4319454367 hasAuthorship W4319454367A5019298277 @default.
- W4319454367 hasAuthorship W4319454367A5021884742 @default.
- W4319454367 hasAuthorship W4319454367A5068176076 @default.
- W4319454367 hasConcept C103278499 @default.
- W4319454367 hasConcept C108583219 @default.
- W4319454367 hasConcept C115961682 @default.
- W4319454367 hasConcept C119857082 @default.
- W4319454367 hasConcept C127413603 @default.
- W4319454367 hasConcept C154945302 @default.
- W4319454367 hasConcept C176217482 @default.
- W4319454367 hasConcept C21547014 @default.
- W4319454367 hasConcept C22019652 @default.
- W4319454367 hasConcept C2780762811 @default.
- W4319454367 hasConcept C41008148 @default.
- W4319454367 hasConcept C50644808 @default.
- W4319454367 hasConcept C557471498 @default.
- W4319454367 hasConcept C73555534 @default.
- W4319454367 hasConceptScore W4319454367C103278499 @default.
- W4319454367 hasConceptScore W4319454367C108583219 @default.
- W4319454367 hasConceptScore W4319454367C115961682 @default.
- W4319454367 hasConceptScore W4319454367C119857082 @default.
- W4319454367 hasConceptScore W4319454367C127413603 @default.
- W4319454367 hasConceptScore W4319454367C154945302 @default.
- W4319454367 hasConceptScore W4319454367C176217482 @default.
- W4319454367 hasConceptScore W4319454367C21547014 @default.
- W4319454367 hasConceptScore W4319454367C22019652 @default.
- W4319454367 hasConceptScore W4319454367C2780762811 @default.
- W4319454367 hasConceptScore W4319454367C41008148 @default.
- W4319454367 hasConceptScore W4319454367C50644808 @default.
- W4319454367 hasConceptScore W4319454367C557471498 @default.
- W4319454367 hasConceptScore W4319454367C73555534 @default.
- W4319454367 hasLocation W43194543671 @default.
- W4319454367 hasOpenAccess W4319454367 @default.
- W4319454367 hasPrimaryLocation W43194543671 @default.
- W4319454367 hasRelatedWork W2589923564 @default.
- W4319454367 hasRelatedWork W2989932438 @default.
- W4319454367 hasRelatedWork W3011996705 @default.
- W4319454367 hasRelatedWork W3099765033 @default.
- W4319454367 hasRelatedWork W3186840088 @default.
- W4319454367 hasRelatedWork W3186919929 @default.
- W4319454367 hasRelatedWork W4287064118 @default.
- W4319454367 hasRelatedWork W4361732492 @default.
- W4319454367 hasRelatedWork W4362499066 @default.
- W4319454367 hasRelatedWork W4366674473 @default.
- W4319454367 isParatext "false" @default.
- W4319454367 isRetracted "false" @default.
- W4319454367 workType "article" @default.