Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319455854> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4319455854 endingPage "13" @default.
- W4319455854 startingPage "1" @default.
- W4319455854 abstract "Internet of Things (IoT) technologies allow building a digital representation of people, objects, or physical phenomena to be available on the Internet. Thus, stakeholders can access this information from remote places or computational systems could analyze this data to find patterns, make decisions, or execute actions. For instance, a doctor could diagnose patients by analyzing the received data from an IoT system even when patients are located in a remote place. This article proposes an IoT system for monitoring electrocardiogram (ECG) signal and processing heart data in order to generate an alert when an arrhythmia is present. This system involves a Polar H10 heart sensor, machine-learning models to classify heart events, and communication technology to share and store patient's information. In the first place, the architecture of the IoT monitoring system and the communication between the components are described by discussing the designing criteria. Second, the experimentation process performs the training and the assessment of three classification algorithms, random forest, convolutional neural network, and k-nearest neighbors. The results show that k-nearest neighbor has the best accuracy percentage classifying the arrhythmias under study (premature ventricular contraction 94%, fusion of ventricular beat 81%, and supraventricular premature beat 82%); also, it is able to discern normal and unclassifiable beats with 93% and 97%, respectively." @default.
- W4319455854 created "2023-02-09" @default.
- W4319455854 creator A5019083374 @default.
- W4319455854 creator A5024158107 @default.
- W4319455854 creator A5062833388 @default.
- W4319455854 creator A5076657750 @default.
- W4319455854 date "2023-02-08" @default.
- W4319455854 modified "2023-10-18" @default.
- W4319455854 title "IoT Based System for Heart Monitoring and Arrhythmia Detection Using Machine Learning" @default.
- W4319455854 cites W2026775633 @default.
- W4319455854 cites W2031977242 @default.
- W4319455854 cites W2032580330 @default.
- W4319455854 cites W2035762343 @default.
- W4319455854 cites W2095409369 @default.
- W4319455854 cites W2099545645 @default.
- W4319455854 cites W2122111042 @default.
- W4319455854 cites W2166704538 @default.
- W4319455854 cites W2196150701 @default.
- W4319455854 cites W2288357664 @default.
- W4319455854 cites W2325644969 @default.
- W4319455854 cites W2326159517 @default.
- W4319455854 cites W2465657026 @default.
- W4319455854 cites W2897062077 @default.
- W4319455854 cites W2911964244 @default.
- W4319455854 cites W2920305302 @default.
- W4319455854 cites W2971458965 @default.
- W4319455854 cites W3007137059 @default.
- W4319455854 cites W3046095786 @default.
- W4319455854 cites W3092461455 @default.
- W4319455854 cites W3093596417 @default.
- W4319455854 cites W3113590832 @default.
- W4319455854 cites W3120992226 @default.
- W4319455854 cites W3136003884 @default.
- W4319455854 cites W3137606323 @default.
- W4319455854 cites W3156146618 @default.
- W4319455854 cites W4230197745 @default.
- W4319455854 cites W4236584247 @default.
- W4319455854 cites W4237982703 @default.
- W4319455854 cites W4239788601 @default.
- W4319455854 cites W4242121546 @default.
- W4319455854 cites W4248198718 @default.
- W4319455854 doi "https://doi.org/10.1155/2023/6401673" @default.
- W4319455854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36818385" @default.
- W4319455854 hasPublicationYear "2023" @default.
- W4319455854 type Work @default.
- W4319455854 citedByCount "1" @default.
- W4319455854 countsByYear W43194558542023 @default.
- W4319455854 crossrefType "journal-article" @default.
- W4319455854 hasAuthorship W4319455854A5019083374 @default.
- W4319455854 hasAuthorship W4319455854A5024158107 @default.
- W4319455854 hasAuthorship W4319455854A5062833388 @default.
- W4319455854 hasAuthorship W4319455854A5076657750 @default.
- W4319455854 hasBestOaLocation W43194558541 @default.
- W4319455854 hasConcept C110875604 @default.
- W4319455854 hasConcept C119857082 @default.
- W4319455854 hasConcept C124101348 @default.
- W4319455854 hasConcept C136764020 @default.
- W4319455854 hasConcept C154945302 @default.
- W4319455854 hasConcept C169258074 @default.
- W4319455854 hasConcept C41008148 @default.
- W4319455854 hasConcept C79403827 @default.
- W4319455854 hasConcept C81363708 @default.
- W4319455854 hasConceptScore W4319455854C110875604 @default.
- W4319455854 hasConceptScore W4319455854C119857082 @default.
- W4319455854 hasConceptScore W4319455854C124101348 @default.
- W4319455854 hasConceptScore W4319455854C136764020 @default.
- W4319455854 hasConceptScore W4319455854C154945302 @default.
- W4319455854 hasConceptScore W4319455854C169258074 @default.
- W4319455854 hasConceptScore W4319455854C41008148 @default.
- W4319455854 hasConceptScore W4319455854C79403827 @default.
- W4319455854 hasConceptScore W4319455854C81363708 @default.
- W4319455854 hasLocation W43194558541 @default.
- W4319455854 hasLocation W43194558542 @default.
- W4319455854 hasLocation W43194558543 @default.
- W4319455854 hasOpenAccess W4319455854 @default.
- W4319455854 hasPrimaryLocation W43194558541 @default.
- W4319455854 hasRelatedWork W2911455822 @default.
- W4319455854 hasRelatedWork W3021430260 @default.
- W4319455854 hasRelatedWork W3027997911 @default.
- W4319455854 hasRelatedWork W3174196512 @default.
- W4319455854 hasRelatedWork W3211546796 @default.
- W4319455854 hasRelatedWork W4287776258 @default.
- W4319455854 hasRelatedWork W4293525103 @default.
- W4319455854 hasRelatedWork W4308191010 @default.
- W4319455854 hasRelatedWork W4318350883 @default.
- W4319455854 hasRelatedWork W4323021782 @default.
- W4319455854 hasVolume "2023" @default.
- W4319455854 isParatext "false" @default.
- W4319455854 isRetracted "false" @default.
- W4319455854 workType "article" @default.