Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319456087> ?p ?o ?g. }
- W4319456087 endingPage "174" @default.
- W4319456087 startingPage "163" @default.
- W4319456087 abstract "Postpartum depression (PPD) is one of the most common psychiatric disorders for women after delivery. The establishment of an effective PPD prediction model helps to distinguish high-risk groups, and verifying whether such high-risk groups can benefit from drug intervention is very important for clinical guidance.We collected data of parturients that underwent a cesarean delivery. The Control group was divided into a training cohort and a testing cohort. Six different ML models were constructed and we compared their prediction performance in the testing cohort. For model interpretation, we introduced SHapley Additive exPlanations (SHAP). Then, training cohort, ketamine group and dexmedetomidine (DEX) group were classified as high or low risk for PPD by the model. A 1:1 propensity score matching (PSM) was performed to compare the incidence of PPD between two groups in different risk cohorts.Extreme gradient enhancement (XGB) had the best recognition effect, with an area under the receiver operating characteristic curve (AUROC) of 0.789 (95 % CI 0.742-0.836) in the training cohort and 0.744 (95 % CI 0.655-0.823) in the testing cohort, respectively. A threshold of 21.5 % PPD risk probability was determined. After PSM, the results showed that the incidence of PPD in the two intervention groups was significantly different from the control group in the high-risk cohort (P < 0.001) but not in the low-risk cohort (P > 0.001).Our study demonstrated that the XGB algorithm provided a more accurate in prediction of PPD risk, and it was beneficial to receive early intervention for the high-risk groups distinguished by the model." @default.
- W4319456087 created "2023-02-09" @default.
- W4319456087 creator A5011353086 @default.
- W4319456087 creator A5013718591 @default.
- W4319456087 creator A5015566565 @default.
- W4319456087 creator A5018200355 @default.
- W4319456087 creator A5019712154 @default.
- W4319456087 creator A5025713829 @default.
- W4319456087 creator A5026624461 @default.
- W4319456087 creator A5055303560 @default.
- W4319456087 creator A5062212508 @default.
- W4319456087 creator A5063253432 @default.
- W4319456087 creator A5063799409 @default.
- W4319456087 creator A5088664989 @default.
- W4319456087 creator A5090051459 @default.
- W4319456087 date "2023-05-01" @default.
- W4319456087 modified "2023-10-16" @default.
- W4319456087 title "An optimization for postpartum depression risk assessment and preventive intervention strategy based machine learning approaches" @default.
- W4319456087 cites W1901616594 @default.
- W4319456087 cites W1927417898 @default.
- W4319456087 cites W1975970108 @default.
- W4319456087 cites W2013832234 @default.
- W4319456087 cites W2068055929 @default.
- W4319456087 cites W2098364806 @default.
- W4319456087 cites W2106135791 @default.
- W4319456087 cites W2114921087 @default.
- W4319456087 cites W2116505587 @default.
- W4319456087 cites W2132322340 @default.
- W4319456087 cites W2149264570 @default.
- W4319456087 cites W2150055336 @default.
- W4319456087 cites W2164117960 @default.
- W4319456087 cites W2164498941 @default.
- W4319456087 cites W2177870565 @default.
- W4319456087 cites W2219379030 @default.
- W4319456087 cites W2276970745 @default.
- W4319456087 cites W2328176404 @default.
- W4319456087 cites W2556851635 @default.
- W4319456087 cites W2559348179 @default.
- W4319456087 cites W2787427645 @default.
- W4319456087 cites W2789497864 @default.
- W4319456087 cites W2885069035 @default.
- W4319456087 cites W2913785089 @default.
- W4319456087 cites W2914543137 @default.
- W4319456087 cites W2943259255 @default.
- W4319456087 cites W2943491685 @default.
- W4319456087 cites W2969122625 @default.
- W4319456087 cites W2972785004 @default.
- W4319456087 cites W2989978599 @default.
- W4319456087 cites W3003864713 @default.
- W4319456087 cites W3012440253 @default.
- W4319456087 cites W3022842346 @default.
- W4319456087 cites W3033489403 @default.
- W4319456087 cites W3033637806 @default.
- W4319456087 cites W3082330153 @default.
- W4319456087 cites W3090927654 @default.
- W4319456087 cites W3105398273 @default.
- W4319456087 cites W3154507372 @default.
- W4319456087 cites W3196869386 @default.
- W4319456087 cites W3199453402 @default.
- W4319456087 cites W4200250850 @default.
- W4319456087 cites W4205649027 @default.
- W4319456087 cites W4224281318 @default.
- W4319456087 cites W4239700635 @default.
- W4319456087 cites W4285594830 @default.
- W4319456087 doi "https://doi.org/10.1016/j.jad.2023.02.028" @default.
- W4319456087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36758872" @default.
- W4319456087 hasPublicationYear "2023" @default.
- W4319456087 type Work @default.
- W4319456087 citedByCount "0" @default.
- W4319456087 crossrefType "journal-article" @default.
- W4319456087 hasAuthorship W4319456087A5011353086 @default.
- W4319456087 hasAuthorship W4319456087A5013718591 @default.
- W4319456087 hasAuthorship W4319456087A5015566565 @default.
- W4319456087 hasAuthorship W4319456087A5018200355 @default.
- W4319456087 hasAuthorship W4319456087A5019712154 @default.
- W4319456087 hasAuthorship W4319456087A5025713829 @default.
- W4319456087 hasAuthorship W4319456087A5026624461 @default.
- W4319456087 hasAuthorship W4319456087A5055303560 @default.
- W4319456087 hasAuthorship W4319456087A5062212508 @default.
- W4319456087 hasAuthorship W4319456087A5063253432 @default.
- W4319456087 hasAuthorship W4319456087A5063799409 @default.
- W4319456087 hasAuthorship W4319456087A5088664989 @default.
- W4319456087 hasAuthorship W4319456087A5090051459 @default.
- W4319456087 hasConcept C120665830 @default.
- W4319456087 hasConcept C121332964 @default.
- W4319456087 hasConcept C12174686 @default.
- W4319456087 hasConcept C126322002 @default.
- W4319456087 hasConcept C17923572 @default.
- W4319456087 hasConcept C201903717 @default.
- W4319456087 hasConcept C2779234561 @default.
- W4319456087 hasConcept C2780262536 @default.
- W4319456087 hasConcept C38652104 @default.
- W4319456087 hasConcept C41008148 @default.
- W4319456087 hasConcept C54355233 @default.
- W4319456087 hasConcept C61511704 @default.
- W4319456087 hasConcept C71924100 @default.
- W4319456087 hasConcept C72563966 @default.
- W4319456087 hasConcept C86803240 @default.