Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319457685> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4319457685 endingPage "106" @default.
- W4319457685 startingPage "79" @default.
- W4319457685 abstract "The reader of the chapter will be able to connect techniques from machine learning (ML) and digital twins (DTs) to gain insights for monitoring and control of (dynamic) security for electrical power systems. DTs are validated and verified high-fidelity (hf) models providing high simulation accuracy. DTs can be used for simulation of the supervised process of system operation and are therefore able to provide synthetic studied data, where measurement data are scarce. However, for some real-time applications in monitoring and control, such high-fidelity simulation models are not appropriate due to the corresponding computational barrier. There, ML aims to create an application-specific, low-fidelity (lf) approximation of the digital twin. Such trained lf models are used in real-time applications where computational time is scarce and lf information is sufficient. The conceptual intersection of hf and lf models has been little explored and becomes increasingly complex. This chapter aims to provide a conceptual overview of how such hf and lf models can be combined. This chapter is split into two parts where the first part is to introduce ML, lf models, and digital twins, hf models, for power systems analysis, and the second chapter is to use these two types of models to form purpose-driven surrogate lf models, illustrated on the example of dynamic security assessment (DSA). In the first part, the concepts for using DTs as hf models for online power system studies and their corresponding tuning of model parameters are introduced. Subsequently, ML i.e., lf models, are introduced and their corresponding training frameworks." @default.
- W4319457685 created "2023-02-09" @default.
- W4319457685 creator A5019114577 @default.
- W4319457685 creator A5020342055 @default.
- W4319457685 creator A5058234963 @default.
- W4319457685 date "2023-01-01" @default.
- W4319457685 modified "2023-09-30" @default.
- W4319457685 title "Machine learning and digital twins: monitoring and control for dynamic security in power systems" @default.
- W4319457685 cites W1578978182 @default.
- W4319457685 cites W1988865926 @default.
- W4319457685 cites W2018201558 @default.
- W4319457685 cites W2056715670 @default.
- W4319457685 cites W2100121347 @default.
- W4319457685 cites W2137984790 @default.
- W4319457685 cites W2141738763 @default.
- W4319457685 cites W2160825102 @default.
- W4319457685 cites W2165862169 @default.
- W4319457685 cites W2217407546 @default.
- W4319457685 cites W2808564119 @default.
- W4319457685 cites W2810596115 @default.
- W4319457685 cites W2884106017 @default.
- W4319457685 cites W2890904471 @default.
- W4319457685 cites W2937026737 @default.
- W4319457685 cites W2950033597 @default.
- W4319457685 cites W3014048166 @default.
- W4319457685 cites W3061623915 @default.
- W4319457685 cites W3083585290 @default.
- W4319457685 cites W3084283970 @default.
- W4319457685 cites W3149445837 @default.
- W4319457685 doi "https://doi.org/10.1016/b978-0-32-399904-5.00010-7" @default.
- W4319457685 hasPublicationYear "2023" @default.
- W4319457685 type Work @default.
- W4319457685 citedByCount "0" @default.
- W4319457685 crossrefType "book-chapter" @default.
- W4319457685 hasAuthorship W4319457685A5019114577 @default.
- W4319457685 hasAuthorship W4319457685A5020342055 @default.
- W4319457685 hasAuthorship W4319457685A5058234963 @default.
- W4319457685 hasConcept C111919701 @default.
- W4319457685 hasConcept C113364801 @default.
- W4319457685 hasConcept C119599485 @default.
- W4319457685 hasConcept C119857082 @default.
- W4319457685 hasConcept C121332964 @default.
- W4319457685 hasConcept C127413603 @default.
- W4319457685 hasConcept C146978453 @default.
- W4319457685 hasConcept C154945302 @default.
- W4319457685 hasConcept C163258240 @default.
- W4319457685 hasConcept C178148461 @default.
- W4319457685 hasConcept C2775924081 @default.
- W4319457685 hasConcept C2776459999 @default.
- W4319457685 hasConcept C41008148 @default.
- W4319457685 hasConcept C62520636 @default.
- W4319457685 hasConcept C64543145 @default.
- W4319457685 hasConcept C76155785 @default.
- W4319457685 hasConcept C89227174 @default.
- W4319457685 hasConcept C98045186 @default.
- W4319457685 hasConceptScore W4319457685C111919701 @default.
- W4319457685 hasConceptScore W4319457685C113364801 @default.
- W4319457685 hasConceptScore W4319457685C119599485 @default.
- W4319457685 hasConceptScore W4319457685C119857082 @default.
- W4319457685 hasConceptScore W4319457685C121332964 @default.
- W4319457685 hasConceptScore W4319457685C127413603 @default.
- W4319457685 hasConceptScore W4319457685C146978453 @default.
- W4319457685 hasConceptScore W4319457685C154945302 @default.
- W4319457685 hasConceptScore W4319457685C163258240 @default.
- W4319457685 hasConceptScore W4319457685C178148461 @default.
- W4319457685 hasConceptScore W4319457685C2775924081 @default.
- W4319457685 hasConceptScore W4319457685C2776459999 @default.
- W4319457685 hasConceptScore W4319457685C41008148 @default.
- W4319457685 hasConceptScore W4319457685C62520636 @default.
- W4319457685 hasConceptScore W4319457685C64543145 @default.
- W4319457685 hasConceptScore W4319457685C76155785 @default.
- W4319457685 hasConceptScore W4319457685C89227174 @default.
- W4319457685 hasConceptScore W4319457685C98045186 @default.
- W4319457685 hasLocation W43194576851 @default.
- W4319457685 hasOpenAccess W4319457685 @default.
- W4319457685 hasPrimaryLocation W43194576851 @default.
- W4319457685 hasRelatedWork W2017572488 @default.
- W4319457685 hasRelatedWork W206766406 @default.
- W4319457685 hasRelatedWork W2378174816 @default.
- W4319457685 hasRelatedWork W2468514837 @default.
- W4319457685 hasRelatedWork W2561744402 @default.
- W4319457685 hasRelatedWork W2961085424 @default.
- W4319457685 hasRelatedWork W2970388146 @default.
- W4319457685 hasRelatedWork W3213790291 @default.
- W4319457685 hasRelatedWork W4288046195 @default.
- W4319457685 hasRelatedWork W4306674287 @default.
- W4319457685 isParatext "false" @default.
- W4319457685 isRetracted "false" @default.
- W4319457685 workType "book-chapter" @default.