Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319457881> ?p ?o ?g. }
- W4319457881 abstract "We complete the kinetic theory of two-dimensional (2D) point vortices initiated in previous works. We use a simpler and more physical formalism. We consider a system of 2D point vortices submitted to a small external stochastic perturbation and determine the response of the system to the perturbation. We derive the diffusion coefficient and the drift by polarization of a test vortex. We introduce a general Fokker–Planck equation involving a diffusion term and a drift term. When the drift by polarization can be neglected, we obtain a secular dressed diffusion equation sourced by the external noise. When the external perturbation is created by a discrete collection of N point vortices, we obtain a Lenard–Balescu-like kinetic equation reducing to a Landau-like kinetic equation when collective effects are neglected. We consider a multi-species system of point vortices. We discuss the process of kinetic blocking in the single and multi-species cases. When the field vortices are at statistical equilibrium (thermal bath), we establish the proper expression of the fluctuation–dissipation theorem for 2D point vortices relating the power spectrum of the fluctuations to the response function of the system. In that case, the drift coefficient and the diffusion coefficient satisfy an Einstein-like relation and the Fokker–Planck equation reduces to a Smoluchowski-like equation. We mention the analogy between 2D point vortices and stellar systems. In particular, the drift of a point vortex in 2D hydrodynamics (Chavanis in Phys Rev E 58:R1199, 1998) is the counterpart of the Chandrasekhar dynamical friction in astrophysics. We also consider a gas of 2D Brownian point vortices described by N coupled stochastic Langevin equations and determine its mean and mesoscopic evolution. In the present paper, we treat the case of unidirectional flows, but our results can be straightforwardly generalized to axisymmetric flows." @default.
- W4319457881 created "2023-02-09" @default.
- W4319457881 creator A5007478460 @default.
- W4319457881 date "2023-02-08" @default.
- W4319457881 modified "2023-10-18" @default.
- W4319457881 title "Kinetic theory of two-dimensional point vortices and fluctuation–dissipation theorem" @default.
- W4319457881 cites W1555780618 @default.
- W4319457881 cites W1875200217 @default.
- W4319457881 cites W1967072900 @default.
- W4319457881 cites W1967574720 @default.
- W4319457881 cites W1967589332 @default.
- W4319457881 cites W1969097610 @default.
- W4319457881 cites W1969235686 @default.
- W4319457881 cites W1969853163 @default.
- W4319457881 cites W1971378009 @default.
- W4319457881 cites W1973076737 @default.
- W4319457881 cites W1975679469 @default.
- W4319457881 cites W1977275870 @default.
- W4319457881 cites W1978862360 @default.
- W4319457881 cites W1978983913 @default.
- W4319457881 cites W1981132910 @default.
- W4319457881 cites W1984153148 @default.
- W4319457881 cites W1984799818 @default.
- W4319457881 cites W1985516991 @default.
- W4319457881 cites W1986436902 @default.
- W4319457881 cites W1988007269 @default.
- W4319457881 cites W1989320155 @default.
- W4319457881 cites W1990130134 @default.
- W4319457881 cites W1998904626 @default.
- W4319457881 cites W2006836828 @default.
- W4319457881 cites W2007383070 @default.
- W4319457881 cites W2008170858 @default.
- W4319457881 cites W2010671949 @default.
- W4319457881 cites W2011184218 @default.
- W4319457881 cites W2015184140 @default.
- W4319457881 cites W2017529216 @default.
- W4319457881 cites W2017957151 @default.
- W4319457881 cites W2018763953 @default.
- W4319457881 cites W2021735470 @default.
- W4319457881 cites W2022073021 @default.
- W4319457881 cites W2023553917 @default.
- W4319457881 cites W2023604652 @default.
- W4319457881 cites W2024703594 @default.
- W4319457881 cites W2025348409 @default.
- W4319457881 cites W2026545869 @default.
- W4319457881 cites W2028632219 @default.
- W4319457881 cites W2028812954 @default.
- W4319457881 cites W2030140432 @default.
- W4319457881 cites W2030302866 @default.
- W4319457881 cites W2033741748 @default.
- W4319457881 cites W2035968917 @default.
- W4319457881 cites W2036031704 @default.
- W4319457881 cites W2036772451 @default.
- W4319457881 cites W2038462420 @default.
- W4319457881 cites W2039852939 @default.
- W4319457881 cites W2041450865 @default.
- W4319457881 cites W2042396454 @default.
- W4319457881 cites W2044111149 @default.
- W4319457881 cites W2049068582 @default.
- W4319457881 cites W2049600089 @default.
- W4319457881 cites W2049643940 @default.
- W4319457881 cites W2050190211 @default.
- W4319457881 cites W2050730625 @default.
- W4319457881 cites W2051097860 @default.
- W4319457881 cites W2053202431 @default.
- W4319457881 cites W2056229464 @default.
- W4319457881 cites W2059012961 @default.
- W4319457881 cites W2059466135 @default.
- W4319457881 cites W2060954098 @default.
- W4319457881 cites W2062844210 @default.
- W4319457881 cites W2064448314 @default.
- W4319457881 cites W2065260674 @default.
- W4319457881 cites W2067626628 @default.
- W4319457881 cites W2068920716 @default.
- W4319457881 cites W2075692199 @default.
- W4319457881 cites W2076602648 @default.
- W4319457881 cites W2076909474 @default.
- W4319457881 cites W2079598615 @default.
- W4319457881 cites W2080676184 @default.
- W4319457881 cites W2082520075 @default.
- W4319457881 cites W2083449482 @default.
- W4319457881 cites W2083777052 @default.
- W4319457881 cites W2085200171 @default.
- W4319457881 cites W2089207926 @default.
- W4319457881 cites W2090747960 @default.
- W4319457881 cites W2091746868 @default.
- W4319457881 cites W2092370406 @default.
- W4319457881 cites W2092627905 @default.
- W4319457881 cites W2093436873 @default.
- W4319457881 cites W2093903396 @default.
- W4319457881 cites W2094402484 @default.
- W4319457881 cites W2095482507 @default.
- W4319457881 cites W2125342321 @default.
- W4319457881 cites W2146181023 @default.
- W4319457881 cites W2149934264 @default.
- W4319457881 cites W2150446631 @default.
- W4319457881 cites W2151754429 @default.
- W4319457881 cites W2151909149 @default.
- W4319457881 cites W2155363039 @default.
- W4319457881 cites W2162225920 @default.