Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319459093> ?p ?o ?g. }
- W4319459093 endingPage "534" @default.
- W4319459093 startingPage "503" @default.
- W4319459093 abstract "Abstract This paper proposes a new approach to solve the problem of bus network design and frequency setting (BNDFS). Transit network design must satisfy the needs of both service users and transit operators. Numerous optimisation techniques have been proposed for BNDFS in the literature. Previous approaches tend to adopt a sequential optimisation strategy that conducts network routing and service frequency setting in two separate steps. To address the limitation of sequential optimisation, our new algorithm uses Reinforcement Learning for a simultaneous optimisation of three key components of BNDFS: the number of bus routes, the route design and service frequencies. The algorithm can design the best set of bus routes without defining the total number of bus routes in advance, which can reduce the overall computational time. The proposed algorithm was tested on the benchmark Mandl Swiss network. The algorithm is further extended to the routing of express services. The validation includes additional test scenarios which modify the transit demand level on the Mandl network. The new algorithm can be useful to assist transit agencies and planners in improving existing routing and service frequency to cope with changing demand conditions." @default.
- W4319459093 created "2023-02-09" @default.
- W4319459093 creator A5003608362 @default.
- W4319459093 creator A5087138648 @default.
- W4319459093 creator A5089494485 @default.
- W4319459093 date "2023-02-08" @default.
- W4319459093 modified "2023-10-14" @default.
- W4319459093 title "A Reinforcement Learning approach for bus network design and frequency setting optimisation" @default.
- W4319459093 cites W1471495039 @default.
- W4319459093 cites W1679924450 @default.
- W4319459093 cites W1955456092 @default.
- W4319459093 cites W1971661364 @default.
- W4319459093 cites W1974365155 @default.
- W4319459093 cites W1976898311 @default.
- W4319459093 cites W1981167958 @default.
- W4319459093 cites W1988446526 @default.
- W4319459093 cites W1992151279 @default.
- W4319459093 cites W2008854782 @default.
- W4319459093 cites W2012766522 @default.
- W4319459093 cites W2013069487 @default.
- W4319459093 cites W2017880525 @default.
- W4319459093 cites W2020070197 @default.
- W4319459093 cites W2029763098 @default.
- W4319459093 cites W2029887230 @default.
- W4319459093 cites W2034158924 @default.
- W4319459093 cites W2041164616 @default.
- W4319459093 cites W2041267197 @default.
- W4319459093 cites W2041424945 @default.
- W4319459093 cites W2051046319 @default.
- W4319459093 cites W2052223915 @default.
- W4319459093 cites W2062495134 @default.
- W4319459093 cites W2072585350 @default.
- W4319459093 cites W2074500080 @default.
- W4319459093 cites W2075355110 @default.
- W4319459093 cites W2076232801 @default.
- W4319459093 cites W2076427237 @default.
- W4319459093 cites W2085002156 @default.
- W4319459093 cites W2088273530 @default.
- W4319459093 cites W2091364887 @default.
- W4319459093 cites W2093286150 @default.
- W4319459093 cites W2094670208 @default.
- W4319459093 cites W2104205822 @default.
- W4319459093 cites W2107941094 @default.
- W4319459093 cites W2114925954 @default.
- W4319459093 cites W2115113834 @default.
- W4319459093 cites W2121707309 @default.
- W4319459093 cites W2131332502 @default.
- W4319459093 cites W2135926883 @default.
- W4319459093 cites W2164166972 @default.
- W4319459093 cites W2169440812 @default.
- W4319459093 cites W2190734544 @default.
- W4319459093 cites W2758374017 @default.
- W4319459093 cites W2797654081 @default.
- W4319459093 cites W2883979847 @default.
- W4319459093 cites W2911240934 @default.
- W4319459093 cites W2915117209 @default.
- W4319459093 cites W2971666455 @default.
- W4319459093 cites W2977240314 @default.
- W4319459093 cites W2998544897 @default.
- W4319459093 cites W3000113396 @default.
- W4319459093 cites W3032061552 @default.
- W4319459093 cites W3093026693 @default.
- W4319459093 cites W3093255386 @default.
- W4319459093 cites W3114138576 @default.
- W4319459093 cites W3189958231 @default.
- W4319459093 cites W3204243174 @default.
- W4319459093 cites W3204424884 @default.
- W4319459093 cites W3206159369 @default.
- W4319459093 cites W3214400595 @default.
- W4319459093 doi "https://doi.org/10.1007/s12469-022-00319-y" @default.
- W4319459093 hasPublicationYear "2023" @default.
- W4319459093 type Work @default.
- W4319459093 citedByCount "1" @default.
- W4319459093 countsByYear W43194590932023 @default.
- W4319459093 crossrefType "journal-article" @default.
- W4319459093 hasAuthorship W4319459093A5003608362 @default.
- W4319459093 hasAuthorship W4319459093A5087138648 @default.
- W4319459093 hasAuthorship W4319459093A5089494485 @default.
- W4319459093 hasBestOaLocation W43194590931 @default.
- W4319459093 hasConcept C114563136 @default.
- W4319459093 hasConcept C127413603 @default.
- W4319459093 hasConcept C13280743 @default.
- W4319459093 hasConcept C136264566 @default.
- W4319459093 hasConcept C136321198 @default.
- W4319459093 hasConcept C154945302 @default.
- W4319459093 hasConcept C162324750 @default.
- W4319459093 hasConcept C177264268 @default.
- W4319459093 hasConcept C185798385 @default.
- W4319459093 hasConcept C199360897 @default.
- W4319459093 hasConcept C203315745 @default.
- W4319459093 hasConcept C205649164 @default.
- W4319459093 hasConcept C22212356 @default.
- W4319459093 hasConcept C26517878 @default.
- W4319459093 hasConcept C2778022998 @default.
- W4319459093 hasConcept C2780378061 @default.
- W4319459093 hasConcept C31258907 @default.
- W4319459093 hasConcept C38652104 @default.
- W4319459093 hasConcept C41008148 @default.