Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319459192> ?p ?o ?g. }
- W4319459192 endingPage "14339" @default.
- W4319459192 startingPage "14322" @default.
- W4319459192 abstract "Crude oil is one of the non-renewable power sources and is the lifeblood of the contemporary industry. Every significant change in the price of crude oil (CO) will have an effect on how the global economy, including COVID-19, develops. This study developed a novel hybrid prediction technique that depends on local mean decomposition, Autoregressive Integrated Moving Average (ARIMA), and Long Short-term Memory (LSTM) models to increase crude oil price prediction accuracy. The original data is decomposed by local mean decomposition (LMD), and the decomposed components are reconstructed into stochastic and deterministic (SD) components by average mutual information to reduce the computation cost and enhance forecasting accuracy, predict each individual reconstructed component by ARIMA, and integrate the residuals with LSTM to capture the nonlinearity in residuals and help to find the final prediction result. The new hybrid model LMD-SD-ARIMA-LSTM has reduced the volatility and solved the issue of the overfitting problem of neural networks. The proposed hybrid technique is validated using publicly accessible data from the West Texas Intermediate (WTI), and forecast accuracy are compared using accuracy measures. The value of Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) for ARIMA, LSTM, LMD-ARIMA, LMD-SD-ARIMA, LMD-ARIMA-LSTM, LMD-SD-ARIMA-LSTM, and Naïve are 1.00, 1.539, 5.289, 0.873, 0.359, 0.106, 4.014 and 2.165, 1.832, 9.165, 1.359, 1.139, 1.124 and 3.821 respectively. From these results, it is concluded that the proposed model LMD-SD-ARIMA-LSTM has minimum values for MAE and MAPE which assured the superiority of the proposed model in One-step ahead forecasting. Moreover, forecasting performance is also compared up to five steps ahead. The findings demonstrate that the suggested approach is a helpful tool for predicting CO prices both in the short and long term. Furthermore, the current study reduces labor costs by combing the stationary and non-stationary Product Functions (PFs) into stochastic and deterministic components with improved accuracy. Meanwhile, the traditional econometric model can strengthen the prediction behavior of CO prices after decomposition and reconstruction, and the new hybrid forecasting method has better performance in medium and long-term forecasting of the CO price. Moreover, accurate predictions can provide reasonable advice for relevant departments to make correct decisions." @default.
- W4319459192 created "2023-02-09" @default.
- W4319459192 creator A5006718747 @default.
- W4319459192 creator A5029919389 @default.
- W4319459192 creator A5034089386 @default.
- W4319459192 creator A5034707465 @default.
- W4319459192 creator A5063886067 @default.
- W4319459192 creator A5077968160 @default.
- W4319459192 date "2023-01-01" @default.
- W4319459192 modified "2023-10-18" @default.
- W4319459192 title "A New Approach for Forecasting Crude Oil Prices Based on Stochastic and Deterministic Influences of LMD Using ARIMA and LSTM Models" @default.
- W4319459192 cites W1661370443 @default.
- W4319459192 cites W1860928946 @default.
- W4319459192 cites W1978266801 @default.
- W4319459192 cites W1991082419 @default.
- W4319459192 cites W2007369711 @default.
- W4319459192 cites W2010387832 @default.
- W4319459192 cites W2028860732 @default.
- W4319459192 cites W2029803196 @default.
- W4319459192 cites W2052414392 @default.
- W4319459192 cites W2064675550 @default.
- W4319459192 cites W2066017952 @default.
- W4319459192 cites W2109510860 @default.
- W4319459192 cites W2137356002 @default.
- W4319459192 cites W2140554090 @default.
- W4319459192 cites W2149292156 @default.
- W4319459192 cites W2408153441 @default.
- W4319459192 cites W2470292068 @default.
- W4319459192 cites W2514161482 @default.
- W4319459192 cites W2523347528 @default.
- W4319459192 cites W2590661630 @default.
- W4319459192 cites W2612082766 @default.
- W4319459192 cites W2620775452 @default.
- W4319459192 cites W2622999711 @default.
- W4319459192 cites W2792338922 @default.
- W4319459192 cites W2792836263 @default.
- W4319459192 cites W2799311116 @default.
- W4319459192 cites W2800138630 @default.
- W4319459192 cites W2802180511 @default.
- W4319459192 cites W2898924913 @default.
- W4319459192 cites W2920974156 @default.
- W4319459192 cites W2963940534 @default.
- W4319459192 cites W2980100207 @default.
- W4319459192 cites W3016208458 @default.
- W4319459192 cites W3031648028 @default.
- W4319459192 cites W3049310425 @default.
- W4319459192 cites W3092411501 @default.
- W4319459192 cites W3125065948 @default.
- W4319459192 cites W3125066716 @default.
- W4319459192 cites W3188529979 @default.
- W4319459192 cites W3197215082 @default.
- W4319459192 cites W3197365020 @default.
- W4319459192 cites W3211137971 @default.
- W4319459192 cites W3214862906 @default.
- W4319459192 cites W3216578860 @default.
- W4319459192 cites W388323479 @default.
- W4319459192 cites W4303958695 @default.
- W4319459192 doi "https://doi.org/10.1109/access.2023.3243232" @default.
- W4319459192 hasPublicationYear "2023" @default.
- W4319459192 type Work @default.
- W4319459192 citedByCount "4" @default.
- W4319459192 countsByYear W43194591922023 @default.
- W4319459192 crossrefType "journal-article" @default.
- W4319459192 hasAuthorship W4319459192A5006718747 @default.
- W4319459192 hasAuthorship W4319459192A5029919389 @default.
- W4319459192 hasAuthorship W4319459192A5034089386 @default.
- W4319459192 hasAuthorship W4319459192A5034707465 @default.
- W4319459192 hasAuthorship W4319459192A5063886067 @default.
- W4319459192 hasAuthorship W4319459192A5077968160 @default.
- W4319459192 hasBestOaLocation W43194591921 @default.
- W4319459192 hasConcept C105795698 @default.
- W4319459192 hasConcept C149782125 @default.
- W4319459192 hasConcept C150217764 @default.
- W4319459192 hasConcept C151406439 @default.
- W4319459192 hasConcept C154945302 @default.
- W4319459192 hasConcept C22019652 @default.
- W4319459192 hasConcept C24338571 @default.
- W4319459192 hasConcept C33923547 @default.
- W4319459192 hasConcept C41008148 @default.
- W4319459192 hasConcept C50644808 @default.
- W4319459192 hasConcept C70784835 @default.
- W4319459192 hasConcept C91602232 @default.
- W4319459192 hasConceptScore W4319459192C105795698 @default.
- W4319459192 hasConceptScore W4319459192C149782125 @default.
- W4319459192 hasConceptScore W4319459192C150217764 @default.
- W4319459192 hasConceptScore W4319459192C151406439 @default.
- W4319459192 hasConceptScore W4319459192C154945302 @default.
- W4319459192 hasConceptScore W4319459192C22019652 @default.
- W4319459192 hasConceptScore W4319459192C24338571 @default.
- W4319459192 hasConceptScore W4319459192C33923547 @default.
- W4319459192 hasConceptScore W4319459192C41008148 @default.
- W4319459192 hasConceptScore W4319459192C50644808 @default.
- W4319459192 hasConceptScore W4319459192C70784835 @default.
- W4319459192 hasConceptScore W4319459192C91602232 @default.
- W4319459192 hasLocation W43194591921 @default.
- W4319459192 hasOpenAccess W4319459192 @default.
- W4319459192 hasPrimaryLocation W43194591921 @default.
- W4319459192 hasRelatedWork W2056376122 @default.