Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319460018> ?p ?o ?g. }
- W4319460018 endingPage "816" @default.
- W4319460018 startingPage "800" @default.
- W4319460018 abstract "Epicardial adipose tissue (EAT) volume is a marker of visceral obesity that can be measured in coronary computed tomography angiograms (CCTA). The clinical value of integrating this measurement in routine CCTA interpretation has not been documented.This study sought to develop a deep-learning network for automated quantification of EAT volume from CCTA, test it in patients who are technically challenging, and validate its prognostic value in routine clinical care.The deep-learning network was trained and validated to autosegment EAT volume in 3,720 CCTA scans from the ORFAN (Oxford Risk Factors and Noninvasive Imaging Study) cohort. The model was tested in patients with challenging anatomy and scan artifacts and applied to a longitudinal cohort of 253 patients post-cardiac surgery and 1,558 patients from the SCOT-HEART (Scottish Computed Tomography of the Heart) Trial, to investigate its prognostic value.External validation of the deep-learning network yielded a concordance correlation coefficient of 0.970 for machine vs human. EAT volume was associated with coronary artery disease (odds ratio [OR] per SD increase in EAT volume: 1.13 [95% CI: 1.04-1.30]; P = 0.01), and atrial fibrillation (OR: 1.25 [95% CI: 1.08-1.40]; P = 0.03), after correction for risk factors (including body mass index). EAT volume predicted all-cause mortality (HR per SD: 1.28 [95% CI: 1.10-1.37]; P = 0.02), myocardial infarction (HR: 1.26 [95% CI:1.09-1.38]; P = 0.001), and stroke (HR: 1.20 [95% CI: 1.09-1.38]; P = 0.02) independently of risk factors in SCOT-HEART (5-year follow-up). It also predicted in-hospital (HR: 2.67 [95% CI: 1.26-3.73]; P ≤ 0.01) and long-term post-cardiac surgery atrial fibrillation (7-year follow-up; HR: 2.14 [95% CI: 1.19-2.97]; P ≤ 0.01).Automated assessment of EAT volume is possible in CCTA, including in patients who are technically challenging; it forms a powerful marker of metabolically unhealthy visceral obesity, which could be used for cardiovascular risk stratification." @default.
- W4319460018 created "2023-02-09" @default.
- W4319460018 creator A5007720638 @default.
- W4319460018 creator A5010406664 @default.
- W4319460018 creator A5014518727 @default.
- W4319460018 creator A5015686603 @default.
- W4319460018 creator A5029901561 @default.
- W4319460018 creator A5030831369 @default.
- W4319460018 creator A5035400733 @default.
- W4319460018 creator A5037356234 @default.
- W4319460018 creator A5049245243 @default.
- W4319460018 creator A5050720055 @default.
- W4319460018 creator A5054441189 @default.
- W4319460018 creator A5056649412 @default.
- W4319460018 creator A5057603022 @default.
- W4319460018 creator A5062631789 @default.
- W4319460018 creator A5069055359 @default.
- W4319460018 creator A5070324380 @default.
- W4319460018 creator A5073840451 @default.
- W4319460018 creator A5074252129 @default.
- W4319460018 creator A5077407549 @default.
- W4319460018 creator A5078417320 @default.
- W4319460018 creator A5079051059 @default.
- W4319460018 creator A5084321298 @default.
- W4319460018 creator A5087794020 @default.
- W4319460018 creator A5088848576 @default.
- W4319460018 date "2023-06-01" @default.
- W4319460018 modified "2023-10-17" @default.
- W4319460018 title "Deep-Learning for Epicardial Adipose Tissue Assessment With Computed Tomography" @default.
- W4319460018 cites W2035718613 @default.
- W4319460018 cites W2090372575 @default.
- W4319460018 cites W2625786115 @default.
- W4319460018 cites W2735363562 @default.
- W4319460018 cites W2771012943 @default.
- W4319460018 cites W2894953624 @default.
- W4319460018 cites W2981696979 @default.
- W4319460018 cites W2989991226 @default.
- W4319460018 cites W3006200844 @default.
- W4319460018 cites W3011371150 @default.
- W4319460018 cites W3082984518 @default.
- W4319460018 cites W3188208839 @default.
- W4319460018 cites W3210853063 @default.
- W4319460018 cites W4200463263 @default.
- W4319460018 cites W4226250038 @default.
- W4319460018 doi "https://doi.org/10.1016/j.jcmg.2022.11.018" @default.
- W4319460018 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36881425" @default.
- W4319460018 hasPublicationYear "2023" @default.
- W4319460018 type Work @default.
- W4319460018 citedByCount "5" @default.
- W4319460018 countsByYear W43194600182023 @default.
- W4319460018 crossrefType "journal-article" @default.
- W4319460018 hasAuthorship W4319460018A5007720638 @default.
- W4319460018 hasAuthorship W4319460018A5010406664 @default.
- W4319460018 hasAuthorship W4319460018A5014518727 @default.
- W4319460018 hasAuthorship W4319460018A5015686603 @default.
- W4319460018 hasAuthorship W4319460018A5029901561 @default.
- W4319460018 hasAuthorship W4319460018A5030831369 @default.
- W4319460018 hasAuthorship W4319460018A5035400733 @default.
- W4319460018 hasAuthorship W4319460018A5037356234 @default.
- W4319460018 hasAuthorship W4319460018A5049245243 @default.
- W4319460018 hasAuthorship W4319460018A5050720055 @default.
- W4319460018 hasAuthorship W4319460018A5054441189 @default.
- W4319460018 hasAuthorship W4319460018A5056649412 @default.
- W4319460018 hasAuthorship W4319460018A5057603022 @default.
- W4319460018 hasAuthorship W4319460018A5062631789 @default.
- W4319460018 hasAuthorship W4319460018A5069055359 @default.
- W4319460018 hasAuthorship W4319460018A5070324380 @default.
- W4319460018 hasAuthorship W4319460018A5073840451 @default.
- W4319460018 hasAuthorship W4319460018A5074252129 @default.
- W4319460018 hasAuthorship W4319460018A5077407549 @default.
- W4319460018 hasAuthorship W4319460018A5078417320 @default.
- W4319460018 hasAuthorship W4319460018A5079051059 @default.
- W4319460018 hasAuthorship W4319460018A5084321298 @default.
- W4319460018 hasAuthorship W4319460018A5087794020 @default.
- W4319460018 hasAuthorship W4319460018A5088848576 @default.
- W4319460018 hasBestOaLocation W43194600181 @default.
- W4319460018 hasConcept C126322002 @default.
- W4319460018 hasConcept C126838900 @default.
- W4319460018 hasConcept C127413603 @default.
- W4319460018 hasConcept C156957248 @default.
- W4319460018 hasConcept C160798450 @default.
- W4319460018 hasConcept C164705383 @default.
- W4319460018 hasConcept C2778198053 @default.
- W4319460018 hasConcept C2778213512 @default.
- W4319460018 hasConcept C2779161974 @default.
- W4319460018 hasConcept C2780221984 @default.
- W4319460018 hasConcept C2780645631 @default.
- W4319460018 hasConcept C500558357 @default.
- W4319460018 hasConcept C71924100 @default.
- W4319460018 hasConcept C72563966 @default.
- W4319460018 hasConcept C78085059 @default.
- W4319460018 hasConcept C78519656 @default.
- W4319460018 hasConcept C80461066 @default.
- W4319460018 hasConceptScore W4319460018C126322002 @default.
- W4319460018 hasConceptScore W4319460018C126838900 @default.
- W4319460018 hasConceptScore W4319460018C127413603 @default.
- W4319460018 hasConceptScore W4319460018C156957248 @default.
- W4319460018 hasConceptScore W4319460018C160798450 @default.