Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319461061> ?p ?o ?g. }
- W4319461061 abstract "Abstract Early pregnancy loss markedly impacts reproductive efficiency in cattle. The objectives were to model a biologically relevant gene signature predicting embryonic competence for survival after integrating transcriptomic data from blastocysts and elongating conceptuses with different developmental capacities and to validate the potential biomarkers with independent embryonic data sets through the application of machine‐learning algorithms. First, two data sets from in vivo‐produced blastocysts competent or not to sustain a pregnancy were integrated with a data set from long and short day‐15 conceptuses. A statistical contrast determined differentially expressed genes (DEG) increasing in expression from a competent blastocyst to a long conceptus and vice versa; these were enriched for KEGG pathways related to glycolysis/gluconeogenesis and RNA processing, respectively. Next, the most discriminative DEG between blastocysts that resulted or did not in pregnancy were selected by linear discriminant analysis. These eight putative biomarker genes were validated by modeling their expression in competent or noncompetent blastocysts through Bayesian logistic regression or neural networks and predicting embryo developmental fate in four external data sets consisting of in vitro‐produced blastocysts (i) competent or not, or (ii) exposed or not to detrimental conditions during culture, and elongated conceptuses (iii) of different length, or (iv) developed in the uteri of high‐ or subfertile heifers. Predictions for each data set were more than 85% accurate, suggesting that these genes play a key role in embryo development and pregnancy establishment. In conclusion, this study integrated transcriptomic data from seven independent experiments to identify a small set of genes capable of predicting embryonic competence for survival." @default.
- W4319461061 created "2023-02-09" @default.
- W4319461061 creator A5028606515 @default.
- W4319461061 creator A5046365910 @default.
- W4319461061 creator A5048600002 @default.
- W4319461061 creator A5064982943 @default.
- W4319461061 creator A5070406270 @default.
- W4319461061 creator A5075779542 @default.
- W4319461061 creator A5078480003 @default.
- W4319461061 date "2023-02-08" @default.
- W4319461061 modified "2023-10-01" @default.
- W4319461061 title "Machine‐learning methods applied to integrated transcriptomic data from bovine blastocysts and elongating conceptuses to identify genes predictive of embryonic competence" @default.
- W4319461061 cites W126363341 @default.
- W4319461061 cites W1513618424 @default.
- W4319461061 cites W1544366392 @default.
- W4319461061 cites W1544564404 @default.
- W4319461061 cites W1831050183 @default.
- W4319461061 cites W1954018409 @default.
- W4319461061 cites W1979313548 @default.
- W4319461061 cites W1986770691 @default.
- W4319461061 cites W1988322245 @default.
- W4319461061 cites W1992549770 @default.
- W4319461061 cites W1993243925 @default.
- W4319461061 cites W1996992572 @default.
- W4319461061 cites W2000332348 @default.
- W4319461061 cites W2017016317 @default.
- W4319461061 cites W2019753523 @default.
- W4319461061 cites W2020943639 @default.
- W4319461061 cites W2027376766 @default.
- W4319461061 cites W2036239749 @default.
- W4319461061 cites W2038861075 @default.
- W4319461061 cites W2051050360 @default.
- W4319461061 cites W2054527561 @default.
- W4319461061 cites W2101174984 @default.
- W4319461061 cites W2110752569 @default.
- W4319461061 cites W2120171525 @default.
- W4319461061 cites W2123704932 @default.
- W4319461061 cites W2131230902 @default.
- W4319461061 cites W2131651601 @default.
- W4319461061 cites W2138347882 @default.
- W4319461061 cites W2139085009 @default.
- W4319461061 cites W2142043767 @default.
- W4319461061 cites W2146512944 @default.
- W4319461061 cites W2147931194 @default.
- W4319461061 cites W2150818194 @default.
- W4319461061 cites W2153110662 @default.
- W4319461061 cites W2154837068 @default.
- W4319461061 cites W2154945464 @default.
- W4319461061 cites W2156278938 @default.
- W4319461061 cites W2158217645 @default.
- W4319461061 cites W2159467731 @default.
- W4319461061 cites W2170165366 @default.
- W4319461061 cites W2179438025 @default.
- W4319461061 cites W2308008356 @default.
- W4319461061 cites W2308385081 @default.
- W4319461061 cites W2475326882 @default.
- W4319461061 cites W2529345938 @default.
- W4319461061 cites W2560800613 @default.
- W4319461061 cites W2592942452 @default.
- W4319461061 cites W2618542783 @default.
- W4319461061 cites W2770117147 @default.
- W4319461061 cites W2790798210 @default.
- W4319461061 cites W2893190519 @default.
- W4319461061 cites W2937880699 @default.
- W4319461061 cites W2938708137 @default.
- W4319461061 cites W2967150294 @default.
- W4319461061 cites W2980590951 @default.
- W4319461061 cites W2997022986 @default.
- W4319461061 cites W3045223849 @default.
- W4319461061 cites W3095471805 @default.
- W4319461061 cites W3157547730 @default.
- W4319461061 cites W3165164963 @default.
- W4319461061 cites W3165308453 @default.
- W4319461061 cites W3177296310 @default.
- W4319461061 cites W4224067851 @default.
- W4319461061 doi "https://doi.org/10.1096/fj.202201977r" @default.
- W4319461061 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36753406" @default.
- W4319461061 hasPublicationYear "2023" @default.
- W4319461061 type Work @default.
- W4319461061 citedByCount "6" @default.
- W4319461061 countsByYear W43194610612023 @default.
- W4319461061 crossrefType "journal-article" @default.
- W4319461061 hasAuthorship W4319461061A5028606515 @default.
- W4319461061 hasAuthorship W4319461061A5046365910 @default.
- W4319461061 hasAuthorship W4319461061A5048600002 @default.
- W4319461061 hasAuthorship W4319461061A5064982943 @default.
- W4319461061 hasAuthorship W4319461061A5070406270 @default.
- W4319461061 hasAuthorship W4319461061A5075779542 @default.
- W4319461061 hasAuthorship W4319461061A5078480003 @default.
- W4319461061 hasBestOaLocation W43194610611 @default.
- W4319461061 hasConcept C104317684 @default.
- W4319461061 hasConcept C150194340 @default.
- W4319461061 hasConcept C162317418 @default.
- W4319461061 hasConcept C16685009 @default.
- W4319461061 hasConcept C172680121 @default.
- W4319461061 hasConcept C196843134 @default.
- W4319461061 hasConcept C2778177303 @default.
- W4319461061 hasConcept C2779234561 @default.
- W4319461061 hasConcept C32253518 @default.
- W4319461061 hasConcept C54355233 @default.