Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319461312> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4319461312 endingPage "46" @default.
- W4319461312 startingPage "43" @default.
- W4319461312 abstract "To use the low-cost anesthesia monitor for realizing anesthesia depth monitoring, effectively assist anesthesiologists in diagnosis and reduce the cost of anesthesia operation.Propose a monitoring method of anesthesia depth based on artificial intelligence. The monitoring method is designed based on convolutional neural network (CNN) and long and short-term memory (LSTM) network. The input data of the model include electrocardiogram (ECG) and pulse wave photoplethysmography (PPG) recorded in the anesthesia monitor, as well as heart rate variability (HRV) calculated from ECG, The output of the model is in three states of anesthesia induction, anesthesia maintenance and anesthesia awakening.The accuracy of anesthesia depth monitoring model under transfer learning is 94.1%, which is better than all comparison methods.The accuracy of this study meets the needs of perioperative anesthesia depth monitoring and the study reduces the operation cost." @default.
- W4319461312 created "2023-02-09" @default.
- W4319461312 creator A5017910487 @default.
- W4319461312 creator A5028388778 @default.
- W4319461312 creator A5028615584 @default.
- W4319461312 creator A5091664350 @default.
- W4319461312 date "2023-01-30" @default.
- W4319461312 modified "2023-09-26" @default.
- W4319461312 title "[Anesthesia Depth Monitoring Based on Anesthesia Monitor with the Help of Artificial Intelligence]." @default.
- W4319461312 doi "https://doi.org/10.3969/j.issn.1671-7104.2023.01.007" @default.
- W4319461312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36752005" @default.
- W4319461312 hasPublicationYear "2023" @default.
- W4319461312 type Work @default.
- W4319461312 citedByCount "0" @default.
- W4319461312 crossrefType "journal-article" @default.
- W4319461312 hasAuthorship W4319461312A5017910487 @default.
- W4319461312 hasAuthorship W4319461312A5028388778 @default.
- W4319461312 hasAuthorship W4319461312A5028615584 @default.
- W4319461312 hasAuthorship W4319461312A5091664350 @default.
- W4319461312 hasConcept C106131492 @default.
- W4319461312 hasConcept C116390426 @default.
- W4319461312 hasConcept C154945302 @default.
- W4319461312 hasConcept C31174226 @default.
- W4319461312 hasConcept C31972630 @default.
- W4319461312 hasConcept C41008148 @default.
- W4319461312 hasConcept C42219234 @default.
- W4319461312 hasConcept C71924100 @default.
- W4319461312 hasConcept C81363708 @default.
- W4319461312 hasConceptScore W4319461312C106131492 @default.
- W4319461312 hasConceptScore W4319461312C116390426 @default.
- W4319461312 hasConceptScore W4319461312C154945302 @default.
- W4319461312 hasConceptScore W4319461312C31174226 @default.
- W4319461312 hasConceptScore W4319461312C31972630 @default.
- W4319461312 hasConceptScore W4319461312C41008148 @default.
- W4319461312 hasConceptScore W4319461312C42219234 @default.
- W4319461312 hasConceptScore W4319461312C71924100 @default.
- W4319461312 hasConceptScore W4319461312C81363708 @default.
- W4319461312 hasIssue "1" @default.
- W4319461312 hasLocation W43194613121 @default.
- W4319461312 hasOpenAccess W4319461312 @default.
- W4319461312 hasPrimaryLocation W43194613121 @default.
- W4319461312 hasRelatedWork W2327556405 @default.
- W4319461312 hasRelatedWork W2349210304 @default.
- W4319461312 hasRelatedWork W2352247659 @default.
- W4319461312 hasRelatedWork W2354785620 @default.
- W4319461312 hasRelatedWork W2373658663 @default.
- W4319461312 hasRelatedWork W2375359181 @default.
- W4319461312 hasRelatedWork W2586998360 @default.
- W4319461312 hasRelatedWork W2748952813 @default.
- W4319461312 hasRelatedWork W2767618185 @default.
- W4319461312 hasRelatedWork W2899084033 @default.
- W4319461312 hasVolume "47" @default.
- W4319461312 isParatext "false" @default.
- W4319461312 isRetracted "false" @default.
- W4319461312 workType "article" @default.