Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319461706> ?p ?o ?g. }
- W4319461706 abstract "Incorporating the genotypic and phenotypic of the correlated traits into the multi-trait model can significantly improve the prediction accuracy of the target trait in animal and plant breeding, as well as human genetics. However, in most cases, the phenotypic information of the correlated and target trait of the individual to be evaluated was null simultaneously, particularly for the newborn. Therefore, we propose a machine learning framework, MAK, to improve the prediction accuracy of the target trait by constructing the multi-target ensemble regression chains and selecting the assistant trait automatically, which predicted the genomic estimated breeding values of the target trait using genotypic information only. The prediction ability of MAK was significantly more robust than the genomic best linear unbiased prediction, BayesB, BayesRR and the multi trait Bayesian method in the four real animal and plant datasets, and the computational efficiency of MAK was roughly 100 times faster than BayesB and BayesRR." @default.
- W4319461706 created "2023-02-09" @default.
- W4319461706 creator A5001096334 @default.
- W4319461706 creator A5002310590 @default.
- W4319461706 creator A5008708530 @default.
- W4319461706 creator A5010929925 @default.
- W4319461706 creator A5022101847 @default.
- W4319461706 creator A5023550382 @default.
- W4319461706 creator A5029060072 @default.
- W4319461706 creator A5029207593 @default.
- W4319461706 creator A5038973496 @default.
- W4319461706 creator A5044571364 @default.
- W4319461706 creator A5048572787 @default.
- W4319461706 creator A5068851817 @default.
- W4319461706 creator A5082240111 @default.
- W4319461706 date "2023-02-08" @default.
- W4319461706 modified "2023-09-22" @default.
- W4319461706 title "MAK: a machine learning framework improved genomic prediction via multi-target ensemble regressor chains and automatic selection of assistant traits" @default.
- W4319461706 cites W1523388120 @default.
- W4319461706 cites W1928998639 @default.
- W4319461706 cites W1970149620 @default.
- W4319461706 cites W1993490180 @default.
- W4319461706 cites W2017586115 @default.
- W4319461706 cites W2023673366 @default.
- W4319461706 cites W2033670977 @default.
- W4319461706 cites W2034361844 @default.
- W4319461706 cites W2064013109 @default.
- W4319461706 cites W2067715889 @default.
- W4319461706 cites W2075417464 @default.
- W4319461706 cites W2077700001 @default.
- W4319461706 cites W2108583185 @default.
- W4319461706 cites W2121055103 @default.
- W4319461706 cites W2122347864 @default.
- W4319461706 cites W2125043961 @default.
- W4319461706 cites W2161633633 @default.
- W4319461706 cites W2166033750 @default.
- W4319461706 cites W2262801583 @default.
- W4319461706 cites W2303043072 @default.
- W4319461706 cites W2561769852 @default.
- W4319461706 cites W2597701578 @default.
- W4319461706 cites W2760544538 @default.
- W4319461706 cites W2773068211 @default.
- W4319461706 cites W2789833233 @default.
- W4319461706 cites W2796468311 @default.
- W4319461706 cites W2890804331 @default.
- W4319461706 cites W2905577432 @default.
- W4319461706 cites W2915405964 @default.
- W4319461706 cites W2919115771 @default.
- W4319461706 cites W2981915280 @default.
- W4319461706 cites W2987479291 @default.
- W4319461706 cites W3003752746 @default.
- W4319461706 cites W3012909962 @default.
- W4319461706 cites W3036465674 @default.
- W4319461706 cites W3041530105 @default.
- W4319461706 cites W3124484778 @default.
- W4319461706 cites W3159144092 @default.
- W4319461706 cites W3185352006 @default.
- W4319461706 cites W3185360271 @default.
- W4319461706 cites W3188659381 @default.
- W4319461706 cites W3198507020 @default.
- W4319461706 cites W4205769562 @default.
- W4319461706 cites W4241223114 @default.
- W4319461706 cites W4286250163 @default.
- W4319461706 cites W806418344 @default.
- W4319461706 doi "https://doi.org/10.1093/bib/bbad043" @default.
- W4319461706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36752363" @default.
- W4319461706 hasPublicationYear "2023" @default.
- W4319461706 type Work @default.
- W4319461706 citedByCount "0" @default.
- W4319461706 crossrefType "journal-article" @default.
- W4319461706 hasAuthorship W4319461706A5001096334 @default.
- W4319461706 hasAuthorship W4319461706A5002310590 @default.
- W4319461706 hasAuthorship W4319461706A5008708530 @default.
- W4319461706 hasAuthorship W4319461706A5010929925 @default.
- W4319461706 hasAuthorship W4319461706A5022101847 @default.
- W4319461706 hasAuthorship W4319461706A5023550382 @default.
- W4319461706 hasAuthorship W4319461706A5029060072 @default.
- W4319461706 hasAuthorship W4319461706A5029207593 @default.
- W4319461706 hasAuthorship W4319461706A5038973496 @default.
- W4319461706 hasAuthorship W4319461706A5044571364 @default.
- W4319461706 hasAuthorship W4319461706A5048572787 @default.
- W4319461706 hasAuthorship W4319461706A5068851817 @default.
- W4319461706 hasAuthorship W4319461706A5082240111 @default.
- W4319461706 hasConcept C103545067 @default.
- W4319461706 hasConcept C104317684 @default.
- W4319461706 hasConcept C105795698 @default.
- W4319461706 hasConcept C106934330 @default.
- W4319461706 hasConcept C107673813 @default.
- W4319461706 hasConcept C119857082 @default.
- W4319461706 hasConcept C135763542 @default.
- W4319461706 hasConcept C153209595 @default.
- W4319461706 hasConcept C154945302 @default.
- W4319461706 hasConcept C199360897 @default.
- W4319461706 hasConcept C2992444039 @default.
- W4319461706 hasConcept C33923547 @default.
- W4319461706 hasConcept C41008148 @default.
- W4319461706 hasConcept C54355233 @default.
- W4319461706 hasConcept C70721500 @default.
- W4319461706 hasConcept C81917197 @default.
- W4319461706 hasConcept C81941488 @default.