Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319462042> ?p ?o ?g. }
- W4319462042 abstract "Abstract Timely detection and understanding of causes for population decline are essential for effective wildlife management and conservation. Assessing trends in population size has been the standard approach, but we propose that monitoring population health could prove more effective. We collated data from 7 bottlenose dolphin ( Tursiops trun catus) populations in the southeastern United States to develop a method for estimating survival probability based on a suite of health measures identified by experts as indices for inflammatory, metabolic, pulmonary, and neuroendocrine systems. We used logistic regression to implement the veterinary expert system for outcome prediction (VESOP) within a Bayesian analysis framework. We fitted parameters with records from 5 of the sites that had a robust network of responders to marine mammal strandings and frequent photographic identification surveys that documented definitive survival outcomes. We also conducted capture–mark–recapture (CMR) analyses of photographic identification data to obtain separate estimates of population survival rates for comparison with VESOP survival estimates. The VESOP analyses showed that multiple measures of health, particularly markers of inflammation, were predictive of 1‐ and 2‐year individual survival. The highest mortality risk 1 year following health assessment related to low alkaline phosphatase (odds ratio [OR] = 10.2 [95% CI: 3.41–26.8]), whereas 2‐year mortality was most influenced by elevated globulin (OR = 9.60 [95% CI: 3.88–22.4]); both are markers of inflammation. The VESOP model predicted population‐level survival rates that correlated with estimated survival rates from CMR analyses for the same populations (1‐year Pearson's r = 0.99, p = 1.52 × 10 –5 ; 2‐year r = 0.94, p = 0.001). Although our proposed approach will not detect acute mortality threats that are largely independent of animal health, such as harmful algal blooms, it can be used to detect chronic health conditions that increase mortality risk. Random sampling of the population is important and advancement in remote sampling methods could facilitate more random selection of subjects, obtainment of larger sample sizes, and extension of the approach to other wildlife species." @default.
- W4319462042 created "2023-02-09" @default.
- W4319462042 creator A5015313746 @default.
- W4319462042 creator A5020743541 @default.
- W4319462042 creator A5025948331 @default.
- W4319462042 creator A5034832316 @default.
- W4319462042 creator A5038634412 @default.
- W4319462042 creator A5038747484 @default.
- W4319462042 creator A5040422936 @default.
- W4319462042 creator A5047288564 @default.
- W4319462042 creator A5049890809 @default.
- W4319462042 creator A5051585211 @default.
- W4319462042 creator A5053092836 @default.
- W4319462042 creator A5056662183 @default.
- W4319462042 creator A5059461278 @default.
- W4319462042 creator A5061435790 @default.
- W4319462042 creator A5065303821 @default.
- W4319462042 creator A5065400626 @default.
- W4319462042 creator A5068536572 @default.
- W4319462042 creator A5079263117 @default.
- W4319462042 creator A5079301600 @default.
- W4319462042 creator A5089094664 @default.
- W4319462042 creator A5090101502 @default.
- W4319462042 creator A5091368039 @default.
- W4319462042 date "2023-04-10" @default.
- W4319462042 modified "2023-09-24" @default.
- W4319462042 title "An expert‐based system to predict population survival rate from health data" @default.
- W4319462042 cites W1603785442 @default.
- W4319462042 cites W1973564995 @default.
- W4319462042 cites W1980443786 @default.
- W4319462042 cites W1987761255 @default.
- W4319462042 cites W1991388231 @default.
- W4319462042 cites W2010011437 @default.
- W4319462042 cites W2025875674 @default.
- W4319462042 cites W2026326482 @default.
- W4319462042 cites W2028258619 @default.
- W4319462042 cites W2055701378 @default.
- W4319462042 cites W2125492055 @default.
- W4319462042 cites W2129817356 @default.
- W4319462042 cites W2133371793 @default.
- W4319462042 cites W2152128906 @default.
- W4319462042 cites W2155262058 @default.
- W4319462042 cites W2159952658 @default.
- W4319462042 cites W2188527342 @default.
- W4319462042 cites W2213290531 @default.
- W4319462042 cites W2320740214 @default.
- W4319462042 cites W2531031757 @default.
- W4319462042 cites W2622600725 @default.
- W4319462042 cites W2623272425 @default.
- W4319462042 cites W2747845624 @default.
- W4319462042 cites W2788652612 @default.
- W4319462042 cites W2807837849 @default.
- W4319462042 cites W2889839644 @default.
- W4319462042 cites W2902096583 @default.
- W4319462042 cites W2991645971 @default.
- W4319462042 cites W3028058183 @default.
- W4319462042 cites W4200048142 @default.
- W4319462042 cites W4320725538 @default.
- W4319462042 doi "https://doi.org/10.1111/cobi.14073" @default.
- W4319462042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36751981" @default.
- W4319462042 hasPublicationYear "2023" @default.
- W4319462042 type Work @default.
- W4319462042 citedByCount "0" @default.
- W4319462042 crossrefType "journal-article" @default.
- W4319462042 hasAuthorship W4319462042A5015313746 @default.
- W4319462042 hasAuthorship W4319462042A5020743541 @default.
- W4319462042 hasAuthorship W4319462042A5025948331 @default.
- W4319462042 hasAuthorship W4319462042A5034832316 @default.
- W4319462042 hasAuthorship W4319462042A5038634412 @default.
- W4319462042 hasAuthorship W4319462042A5038747484 @default.
- W4319462042 hasAuthorship W4319462042A5040422936 @default.
- W4319462042 hasAuthorship W4319462042A5047288564 @default.
- W4319462042 hasAuthorship W4319462042A5049890809 @default.
- W4319462042 hasAuthorship W4319462042A5051585211 @default.
- W4319462042 hasAuthorship W4319462042A5053092836 @default.
- W4319462042 hasAuthorship W4319462042A5056662183 @default.
- W4319462042 hasAuthorship W4319462042A5059461278 @default.
- W4319462042 hasAuthorship W4319462042A5061435790 @default.
- W4319462042 hasAuthorship W4319462042A5065303821 @default.
- W4319462042 hasAuthorship W4319462042A5065400626 @default.
- W4319462042 hasAuthorship W4319462042A5068536572 @default.
- W4319462042 hasAuthorship W4319462042A5079263117 @default.
- W4319462042 hasAuthorship W4319462042A5079301600 @default.
- W4319462042 hasAuthorship W4319462042A5089094664 @default.
- W4319462042 hasAuthorship W4319462042A5090101502 @default.
- W4319462042 hasAuthorship W4319462042A5091368039 @default.
- W4319462042 hasBestOaLocation W43194620421 @default.
- W4319462042 hasConcept C10515644 @default.
- W4319462042 hasConcept C126322002 @default.
- W4319462042 hasConcept C144024400 @default.
- W4319462042 hasConcept C149923435 @default.
- W4319462042 hasConcept C151956035 @default.
- W4319462042 hasConcept C156957248 @default.
- W4319462042 hasConcept C2908647359 @default.
- W4319462042 hasConcept C36528806 @default.
- W4319462042 hasConcept C71924100 @default.
- W4319462042 hasConcept C99454951 @default.
- W4319462042 hasConceptScore W4319462042C10515644 @default.
- W4319462042 hasConceptScore W4319462042C126322002 @default.
- W4319462042 hasConceptScore W4319462042C144024400 @default.