Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319588310> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4319588310 abstract "Abstract Small Modular Reactors (SMRs) have attracted much attention in recent years, and they could play a significant role in the future of energy supply and the nuclear industry. Many factors have contributed to the advancement of SMRs, including their affordability and zero greenhouse gas emissions. However, the most significant advantage associated with SMRs is their increased safety level, which has been achieved by introducing a wide range of new design features. Despite the diversity of design techniques, a similar set of design principles, such as Passive Safety Systems (PSSs), has been adopted to improve plant safety and robustness, eliminate design vulnerabilities, minimize accident likelihood, and mitigate accident effects. Reliability and safety evaluation of PSSs are crucial from the design phase to achieve these objectives. Probabilistic Safety Assessment (PSA) is a well-known methodology for analyzing risk levels associated with safety-critical systems in many industries, such as the aerospace, oil and gas, and nuclear industries. Probabilistic safety assessment utilizes the combination of Event Tree (ET) and Fault Tree (FT) techniques to estimate risks associated with certain undesired top events, such as core meltdown in the nuclear industry. Although PSA offers a range of advantages for safety assessment compared with traditional deterministic risk analysis technology, it also has some limitations. There are still many challenges associated with dynamic PSA analysis due to the demand for computational power for oversized FTs and ETs. Moreover, the final assessment result is prone to a significant uncertainty level due to human-related errors. Some of the challenges associated with PSA might be alleviated by Artificial Neural Networks (ANNs), as ANNs address the limitations of PSA, such as adaptive capacity, learning ability, and real-time calculation, which are challenging for dynamic process systems. Apart from ANNs, Bayesian Networks (BNs) are used to establish the collection of stochastic processes and their conditional dependencies through graphical connections. Bayesian Network is a graph layout that models accident scenarios and various real-world problems. This paper investigates the application of artificial intelligence (Deep Learning (DL)) to enhance FT analysis through the conversion of FT and ANN models. The potentiality of extending this technique to analyze the reliability and safety of PSSs in SMRs is examined. In SMRs, natural circulation has a low driving force, and PSSs are easily manipulated by system variables such as heat loss, flow friction, and oxidation, leading to system instability and jeopardizing the system’s safety. As a result, FT analysis is inadequate to capture these effects in real-time to analyze the reliability and safety of PSSs. This paper demonstrates that the introduction of ANN could help address some of these limitations." @default.
- W4319588310 created "2023-02-09" @default.
- W4319588310 creator A5015566644 @default.
- W4319588310 creator A5057450762 @default.
- W4319588310 date "2022-10-30" @default.
- W4319588310 modified "2023-10-18" @default.
- W4319588310 title "Reliability and Safety Assessment of Passive Safety Systems Through Coupling of Fault Tree Analysis and Artificial Neural Network" @default.
- W4319588310 doi "https://doi.org/10.1115/imece2022-95897" @default.
- W4319588310 hasPublicationYear "2022" @default.
- W4319588310 type Work @default.
- W4319588310 citedByCount "0" @default.
- W4319588310 crossrefType "proceedings-article" @default.
- W4319588310 hasAuthorship W4319588310A5015566644 @default.
- W4319588310 hasAuthorship W4319588310A5057450762 @default.
- W4319588310 hasConcept C101468663 @default.
- W4319588310 hasConcept C107094494 @default.
- W4319588310 hasConcept C111919701 @default.
- W4319588310 hasConcept C112930515 @default.
- W4319588310 hasConcept C127413603 @default.
- W4319588310 hasConcept C132835097 @default.
- W4319588310 hasConcept C154945302 @default.
- W4319588310 hasConcept C18903297 @default.
- W4319588310 hasConcept C200601418 @default.
- W4319588310 hasConcept C2778917722 @default.
- W4319588310 hasConcept C41008148 @default.
- W4319588310 hasConcept C49937458 @default.
- W4319588310 hasConcept C513653683 @default.
- W4319588310 hasConcept C71924100 @default.
- W4319588310 hasConcept C73722673 @default.
- W4319588310 hasConcept C78519656 @default.
- W4319588310 hasConcept C86803240 @default.
- W4319588310 hasConcept C91914117 @default.
- W4319588310 hasConceptScore W4319588310C101468663 @default.
- W4319588310 hasConceptScore W4319588310C107094494 @default.
- W4319588310 hasConceptScore W4319588310C111919701 @default.
- W4319588310 hasConceptScore W4319588310C112930515 @default.
- W4319588310 hasConceptScore W4319588310C127413603 @default.
- W4319588310 hasConceptScore W4319588310C132835097 @default.
- W4319588310 hasConceptScore W4319588310C154945302 @default.
- W4319588310 hasConceptScore W4319588310C18903297 @default.
- W4319588310 hasConceptScore W4319588310C200601418 @default.
- W4319588310 hasConceptScore W4319588310C2778917722 @default.
- W4319588310 hasConceptScore W4319588310C41008148 @default.
- W4319588310 hasConceptScore W4319588310C49937458 @default.
- W4319588310 hasConceptScore W4319588310C513653683 @default.
- W4319588310 hasConceptScore W4319588310C71924100 @default.
- W4319588310 hasConceptScore W4319588310C73722673 @default.
- W4319588310 hasConceptScore W4319588310C78519656 @default.
- W4319588310 hasConceptScore W4319588310C86803240 @default.
- W4319588310 hasConceptScore W4319588310C91914117 @default.
- W4319588310 hasLocation W43195883101 @default.
- W4319588310 hasOpenAccess W4319588310 @default.
- W4319588310 hasPrimaryLocation W43195883101 @default.
- W4319588310 hasRelatedWork W1531543384 @default.
- W4319588310 hasRelatedWork W1971110906 @default.
- W4319588310 hasRelatedWork W2021903470 @default.
- W4319588310 hasRelatedWork W2040492326 @default.
- W4319588310 hasRelatedWork W2067803157 @default.
- W4319588310 hasRelatedWork W2202764497 @default.
- W4319588310 hasRelatedWork W2365968231 @default.
- W4319588310 hasRelatedWork W3207727901 @default.
- W4319588310 hasRelatedWork W3209447324 @default.
- W4319588310 hasRelatedWork W86404807 @default.
- W4319588310 isParatext "false" @default.
- W4319588310 isRetracted "false" @default.
- W4319588310 workType "article" @default.