Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319598468> ?p ?o ?g. }
- W4319598468 endingPage "28" @default.
- W4319598468 startingPage "28" @default.
- W4319598468 abstract "Tour planning has become both challenging and time-consuming due to the huge amount of information available online and the variety of options to choose from. This is more so as each traveler has unique set of interests and location preferences in addition to other tour-based constraints such as vaccination status and pandemic travel restrictions. Several travel planning companies and agencies have emerged with more sophisticated online services to capitalize on global tourism effectively by using technology for making suitable recommendations to travel seekers. However, such systems predominantly adopt a destination-based recommendation approach and often come as bundled packages with limited customization options for incorporating each traveler’s preferences. To address these limitations, “thematic travel planning” has emerged as a recent alternative with researchers adopting text-based data mining for achieving value-added online tourism services. Understanding the need for a more holistic theme approach in this domain, our aim is to propose an augmented model to integrate analytics of a variety of big data (both static and dynamic). Our unique inclusive model covers text mining and data mining of destination images, reviews on tourist activities, weather forecasts, and recent events via social media for generating more user-centric and location-based thematic recommendations efficiently. In this paper, we describe an implementation of our proposed inclusive hybrid recommendation model that uses data of multimodal ranking of user preferences. Furthermore, in this study, we present an experimental evaluation of our model’s effectiveness. We present the details of our improvised model that employs various statistical and machine learning techniques on existing data available online, such as travel forums and social media reviews in order to arrive at the most relevant and suitable travel recommendations. Our hybrid recommender built using various Spark models such as naïve Bayes classifier, trigonometric functions, deep learning convolutional neural network (CNN), time series, and NLP with sentiment scores using AFINN (sentiment analysis developed by Finn Årup Nielsen) shows promising results in the directions of benefit for an individual model’s complementary advantages. Overall, our proposed hybrid recommendation algorithm serves as an active learner of user preferences and ranking by collecting explicit information via the system and uses such rich information to make personalized augmented recommendations according to the unique preferences of travelers." @default.
- W4319598468 created "2023-02-09" @default.
- W4319598468 creator A5063102238 @default.
- W4319598468 creator A5069288055 @default.
- W4319598468 creator A5072259792 @default.
- W4319598468 date "2023-02-07" @default.
- W4319598468 modified "2023-09-25" @default.
- W4319598468 title "A Thematic Travel Recommendation System Using an Augmented Big Data Analytical Model" @default.
- W4319598468 cites W1535290758 @default.
- W4319598468 cites W1690919088 @default.
- W4319598468 cites W1964729668 @default.
- W4319598468 cites W1970339973 @default.
- W4319598468 cites W1983566109 @default.
- W4319598468 cites W2037221229 @default.
- W4319598468 cites W2046212000 @default.
- W4319598468 cites W2057333662 @default.
- W4319598468 cites W2078984918 @default.
- W4319598468 cites W2079499251 @default.
- W4319598468 cites W2116817084 @default.
- W4319598468 cites W2131921262 @default.
- W4319598468 cites W2137063737 @default.
- W4319598468 cites W2147347091 @default.
- W4319598468 cites W2147921656 @default.
- W4319598468 cites W2151526720 @default.
- W4319598468 cites W2159128662 @default.
- W4319598468 cites W2618416470 @default.
- W4319598468 cites W2713294160 @default.
- W4319598468 cites W2742305871 @default.
- W4319598468 cites W2755277075 @default.
- W4319598468 cites W2765456220 @default.
- W4319598468 cites W2905240695 @default.
- W4319598468 cites W3005227596 @default.
- W4319598468 cites W3005629627 @default.
- W4319598468 cites W3109337921 @default.
- W4319598468 cites W3123348991 @default.
- W4319598468 cites W3198899523 @default.
- W4319598468 cites W3200888467 @default.
- W4319598468 cites W4225321042 @default.
- W4319598468 cites W4231080135 @default.
- W4319598468 cites W4245071566 @default.
- W4319598468 cites W4294598674 @default.
- W4319598468 doi "https://doi.org/10.3390/technologies11010028" @default.
- W4319598468 hasPublicationYear "2023" @default.
- W4319598468 type Work @default.
- W4319598468 citedByCount "0" @default.
- W4319598468 crossrefType "journal-article" @default.
- W4319598468 hasAuthorship W4319598468A5063102238 @default.
- W4319598468 hasAuthorship W4319598468A5069288055 @default.
- W4319598468 hasAuthorship W4319598468A5072259792 @default.
- W4319598468 hasBestOaLocation W43195984681 @default.
- W4319598468 hasConcept C124101348 @default.
- W4319598468 hasConcept C136197465 @default.
- W4319598468 hasConcept C136764020 @default.
- W4319598468 hasConcept C144024400 @default.
- W4319598468 hasConcept C154945302 @default.
- W4319598468 hasConcept C166957645 @default.
- W4319598468 hasConcept C171686336 @default.
- W4319598468 hasConcept C183003079 @default.
- W4319598468 hasConcept C18918823 @default.
- W4319598468 hasConcept C190248442 @default.
- W4319598468 hasConcept C205649164 @default.
- W4319598468 hasConcept C23123220 @default.
- W4319598468 hasConcept C2522767166 @default.
- W4319598468 hasConcept C36289849 @default.
- W4319598468 hasConcept C41008148 @default.
- W4319598468 hasConcept C518677369 @default.
- W4319598468 hasConcept C557471498 @default.
- W4319598468 hasConcept C58640448 @default.
- W4319598468 hasConcept C66402592 @default.
- W4319598468 hasConcept C74196892 @default.
- W4319598468 hasConcept C75684735 @default.
- W4319598468 hasConcept C79158427 @default.
- W4319598468 hasConcept C93692415 @default.
- W4319598468 hasConceptScore W4319598468C124101348 @default.
- W4319598468 hasConceptScore W4319598468C136197465 @default.
- W4319598468 hasConceptScore W4319598468C136764020 @default.
- W4319598468 hasConceptScore W4319598468C144024400 @default.
- W4319598468 hasConceptScore W4319598468C154945302 @default.
- W4319598468 hasConceptScore W4319598468C166957645 @default.
- W4319598468 hasConceptScore W4319598468C171686336 @default.
- W4319598468 hasConceptScore W4319598468C183003079 @default.
- W4319598468 hasConceptScore W4319598468C18918823 @default.
- W4319598468 hasConceptScore W4319598468C190248442 @default.
- W4319598468 hasConceptScore W4319598468C205649164 @default.
- W4319598468 hasConceptScore W4319598468C23123220 @default.
- W4319598468 hasConceptScore W4319598468C2522767166 @default.
- W4319598468 hasConceptScore W4319598468C36289849 @default.
- W4319598468 hasConceptScore W4319598468C41008148 @default.
- W4319598468 hasConceptScore W4319598468C518677369 @default.
- W4319598468 hasConceptScore W4319598468C557471498 @default.
- W4319598468 hasConceptScore W4319598468C58640448 @default.
- W4319598468 hasConceptScore W4319598468C66402592 @default.
- W4319598468 hasConceptScore W4319598468C74196892 @default.
- W4319598468 hasConceptScore W4319598468C75684735 @default.
- W4319598468 hasConceptScore W4319598468C79158427 @default.
- W4319598468 hasConceptScore W4319598468C93692415 @default.
- W4319598468 hasIssue "1" @default.
- W4319598468 hasLocation W43195984681 @default.