Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319601426> ?p ?o ?g. }
- W4319601426 endingPage "119660" @default.
- W4319601426 startingPage "119660" @default.
- W4319601426 abstract "Network surveillance, i.e., the detection of anomalous behaviour in communications in a network, has become an important issue in recent years. In this field, techniques of statistical process monitoring, especially control charts, have been frequently applied to monitor the probability of existing connections between the members (nodes) of such a network. As another approach, monitoring the number of communications between the nodes is also an important way to identify network anomalies. Previous works have focused on conventional statistical control charts, but there are no machine learning approaches, although the performance of machine learning based control charts has been shown to be excellent in several other applications. This paper aims to develop machine learning based control charts for network surveillance problems in the case of monitoring the number of communications between the nodes. The results of extensive Monte Carlo simulations reveal the superiority of the proposed method over conventional competitors." @default.
- W4319601426 created "2023-02-09" @default.
- W4319601426 creator A5047234240 @default.
- W4319601426 creator A5055024838 @default.
- W4319601426 creator A5062846555 @default.
- W4319601426 creator A5073444643 @default.
- W4319601426 date "2023-06-01" @default.
- W4319601426 modified "2023-10-11" @default.
- W4319601426 title "A network surveillance approach using machine learning based control charts" @default.
- W4319601426 cites W1965200303 @default.
- W4319601426 cites W1997774563 @default.
- W4319601426 cites W2010098049 @default.
- W4319601426 cites W2028217358 @default.
- W4319601426 cites W2038880405 @default.
- W4319601426 cites W2056503728 @default.
- W4319601426 cites W2069810266 @default.
- W4319601426 cites W2089554624 @default.
- W4319601426 cites W2093819105 @default.
- W4319601426 cites W2126264453 @default.
- W4319601426 cites W2148187321 @default.
- W4319601426 cites W2173303823 @default.
- W4319601426 cites W2232263742 @default.
- W4319601426 cites W2234416893 @default.
- W4319601426 cites W2254764990 @default.
- W4319601426 cites W2433531816 @default.
- W4319601426 cites W2512486500 @default.
- W4319601426 cites W2517266538 @default.
- W4319601426 cites W2527978761 @default.
- W4319601426 cites W2557302796 @default.
- W4319601426 cites W2619062098 @default.
- W4319601426 cites W2622943132 @default.
- W4319601426 cites W2753717566 @default.
- W4319601426 cites W2778806007 @default.
- W4319601426 cites W2792968123 @default.
- W4319601426 cites W2793709751 @default.
- W4319601426 cites W2800201683 @default.
- W4319601426 cites W2802441652 @default.
- W4319601426 cites W2886310805 @default.
- W4319601426 cites W2886855687 @default.
- W4319601426 cites W2903944587 @default.
- W4319601426 cites W2906850869 @default.
- W4319601426 cites W2917034551 @default.
- W4319601426 cites W2930279847 @default.
- W4319601426 cites W2939733432 @default.
- W4319601426 cites W2945020349 @default.
- W4319601426 cites W2947499349 @default.
- W4319601426 cites W2955070935 @default.
- W4319601426 cites W2962746665 @default.
- W4319601426 cites W2963395938 @default.
- W4319601426 cites W2963569636 @default.
- W4319601426 cites W2965062467 @default.
- W4319601426 cites W2968151853 @default.
- W4319601426 cites W2970014118 @default.
- W4319601426 cites W2990664669 @default.
- W4319601426 cites W3003745590 @default.
- W4319601426 cites W3010954878 @default.
- W4319601426 cites W3015517614 @default.
- W4319601426 cites W3023532456 @default.
- W4319601426 cites W3041113806 @default.
- W4319601426 cites W3044867970 @default.
- W4319601426 cites W3047083845 @default.
- W4319601426 cites W307289813 @default.
- W4319601426 cites W3103060884 @default.
- W4319601426 cites W3112647290 @default.
- W4319601426 cites W3116753718 @default.
- W4319601426 cites W3133255363 @default.
- W4319601426 cites W3158645101 @default.
- W4319601426 cites W3178682973 @default.
- W4319601426 cites W3179274894 @default.
- W4319601426 cites W3179821841 @default.
- W4319601426 cites W3187460860 @default.
- W4319601426 cites W3199287839 @default.
- W4319601426 cites W3199826375 @default.
- W4319601426 cites W3207951730 @default.
- W4319601426 cites W3209871373 @default.
- W4319601426 cites W4206792916 @default.
- W4319601426 cites W4210680502 @default.
- W4319601426 cites W4280648669 @default.
- W4319601426 doi "https://doi.org/10.1016/j.eswa.2023.119660" @default.
- W4319601426 hasPublicationYear "2023" @default.
- W4319601426 type Work @default.
- W4319601426 citedByCount "8" @default.
- W4319601426 countsByYear W43196014262023 @default.
- W4319601426 crossrefType "journal-article" @default.
- W4319601426 hasAuthorship W4319601426A5047234240 @default.
- W4319601426 hasAuthorship W4319601426A5055024838 @default.
- W4319601426 hasAuthorship W4319601426A5062846555 @default.
- W4319601426 hasAuthorship W4319601426A5073444643 @default.
- W4319601426 hasConcept C111919701 @default.
- W4319601426 hasConcept C113644684 @default.
- W4319601426 hasConcept C119857082 @default.
- W4319601426 hasConcept C124101348 @default.
- W4319601426 hasConcept C127576917 @default.
- W4319601426 hasConcept C154945302 @default.
- W4319601426 hasConcept C162324750 @default.
- W4319601426 hasConcept C187736073 @default.
- W4319601426 hasConcept C196985124 @default.
- W4319601426 hasConcept C202444582 @default.