Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319601611> ?p ?o ?g. }
- W4319601611 endingPage "851" @default.
- W4319601611 startingPage "827" @default.
- W4319601611 abstract "Abstract Herein, we present a new data-driven multiscale framework called FE $${}^textrm{ANN}$$ <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML> <mml:msup> <mml:mrow /> <mml:mtext>ANN</mml:mtext> </mml:msup> </mml:math> which is based on two main keystones: the usage of physics-constrained artificial neural networks (ANNs) as macroscopic surrogate models and an autonomous data mining process. Our approach allows the efficient simulation of materials with complex underlying microstructures which reveal an overall anisotropic and nonlinear behavior on the macroscale. Thereby, we restrict ourselves to finite strain hyperelasticity problems for now. By using a set of problem specific invariants as the input of the ANN and the Helmholtz free energy density as the output, several physical principles, e. g., objectivity, material symmetry, compatibility with the balance of angular momentum and thermodynamic consistency are fulfilled a priori. The necessary data for the training of the ANN-based surrogate model, i. e., macroscopic deformations and corresponding stresses, are collected via computational homogenization of representative volume elements (RVEs). Thereby, the core feature of the approach is given by a completely autonomous mining of the required data set within an overall loop. In each iteration of the loop, new data are generated by gathering the macroscopic deformation states from the macroscopic finite element simulation and a subsequently sorting by using the anisotropy class of the considered material. Finally, all unknown deformations are prescribed in the RVE simulation to get the corresponding stresses and thus to extend the data set. The proposed framework consequently allows to reduce the number of time-consuming microscale simulations to a minimum. It is exemplarily applied to several descriptive examples, where a fiber reinforced composite with a highly nonlinear Ogden-type behavior of the individual components is considered. Thereby, a rather high accuracy could be proved by a validation of the approach." @default.
- W4319601611 created "2023-02-09" @default.
- W4319601611 creator A5011405214 @default.
- W4319601611 creator A5053220620 @default.
- W4319601611 creator A5059225336 @default.
- W4319601611 creator A5084862505 @default.
- W4319601611 date "2023-02-08" @default.
- W4319601611 modified "2023-09-30" @default.
- W4319601611 title "FE$${}^textrm{ANN}$$: an efficient data-driven multiscale approach based on physics-constrained neural networks and automated data mining" @default.
- W4319601611 cites W125768999 @default.
- W4319601611 cites W1606775516 @default.
- W4319601611 cites W2007650703 @default.
- W4319601611 cites W2031173910 @default.
- W4319601611 cites W2033793034 @default.
- W4319601611 cites W2064563136 @default.
- W4319601611 cites W2068157303 @default.
- W4319601611 cites W2122406408 @default.
- W4319601611 cites W2133578162 @default.
- W4319601611 cites W2194141773 @default.
- W4319601611 cites W2261676784 @default.
- W4319601611 cites W2476441260 @default.
- W4319601611 cites W2504619654 @default.
- W4319601611 cites W2539324467 @default.
- W4319601611 cites W2582174159 @default.
- W4319601611 cites W2610165525 @default.
- W4319601611 cites W2624989300 @default.
- W4319601611 cites W2759450335 @default.
- W4319601611 cites W2804156115 @default.
- W4319601611 cites W2810182274 @default.
- W4319601611 cites W2873839375 @default.
- W4319601611 cites W2884529566 @default.
- W4319601611 cites W2889287912 @default.
- W4319601611 cites W2897923334 @default.
- W4319601611 cites W2899283552 @default.
- W4319601611 cites W2910034952 @default.
- W4319601611 cites W2946680784 @default.
- W4319601611 cites W2952148134 @default.
- W4319601611 cites W2969744700 @default.
- W4319601611 cites W2970377496 @default.
- W4319601611 cites W2982699779 @default.
- W4319601611 cites W2985942842 @default.
- W4319601611 cites W2999081549 @default.
- W4319601611 cites W3007894763 @default.
- W4319601611 cites W3020474415 @default.
- W4319601611 cites W3028072861 @default.
- W4319601611 cites W3033580147 @default.
- W4319601611 cites W3034987805 @default.
- W4319601611 cites W3040235575 @default.
- W4319601611 cites W3096894941 @default.
- W4319601611 cites W3102413575 @default.
- W4319601611 cites W3108104385 @default.
- W4319601611 cites W3108491918 @default.
- W4319601611 cites W3111771697 @default.
- W4319601611 cites W3114999158 @default.
- W4319601611 cites W3120267840 @default.
- W4319601611 cites W3120550994 @default.
- W4319601611 cites W3127535373 @default.
- W4319601611 cites W3131608859 @default.
- W4319601611 cites W3139302158 @default.
- W4319601611 cites W3149234073 @default.
- W4319601611 cites W3157533411 @default.
- W4319601611 cites W3160138438 @default.
- W4319601611 cites W3166819995 @default.
- W4319601611 cites W3179579813 @default.
- W4319601611 cites W3188644181 @default.
- W4319601611 cites W3191891057 @default.
- W4319601611 cites W3198790863 @default.
- W4319601611 cites W3199814420 @default.
- W4319601611 cites W3203198738 @default.
- W4319601611 cites W3205864813 @default.
- W4319601611 cites W3208492199 @default.
- W4319601611 cites W3213049805 @default.
- W4319601611 cites W3215085381 @default.
- W4319601611 cites W3217473911 @default.
- W4319601611 cites W4200611549 @default.
- W4319601611 cites W4200633663 @default.
- W4319601611 cites W4206082967 @default.
- W4319601611 cites W4206101248 @default.
- W4319601611 cites W4224278884 @default.
- W4319601611 cites W4225303591 @default.
- W4319601611 cites W4225405004 @default.
- W4319601611 cites W4229363943 @default.
- W4319601611 cites W4245654886 @default.
- W4319601611 cites W4253538687 @default.
- W4319601611 cites W4280584675 @default.
- W4319601611 cites W4283067940 @default.
- W4319601611 cites W4285384816 @default.
- W4319601611 cites W4285983800 @default.
- W4319601611 cites W4293016734 @default.
- W4319601611 cites W4293155360 @default.
- W4319601611 doi "https://doi.org/10.1007/s00466-022-02260-0" @default.
- W4319601611 hasPublicationYear "2023" @default.
- W4319601611 type Work @default.
- W4319601611 citedByCount "6" @default.
- W4319601611 countsByYear W43196016112023 @default.
- W4319601611 crossrefType "journal-article" @default.
- W4319601611 hasAuthorship W4319601611A5011405214 @default.
- W4319601611 hasAuthorship W4319601611A5053220620 @default.