Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319602008> ?p ?o ?g. }
- W4319602008 endingPage "162103" @default.
- W4319602008 startingPage "162103" @default.
- W4319602008 abstract "The wide application of TiO2-based engineered nanoparticles (nTiO2) inevitably led to release into aquatic ecosystems. Importantly, increasing studies have emphasized the high risks of nTiO2 to coastal environments. Bivalves, the representative benthic filter feeders in coastal zones, acted as important roles to assess and monitor the toxic effects of nanoparticles. Oxidative damage was one of the main toxic mechanisms of nTiO2 on bivalves, but the experimental variables/nanomaterial characteristics were diverse and the toxicity mechanism was complex. Therefore, it was very necessary to develop machine learning model to characterize and predict the potential toxicity. In this study, thirty-six machine learning models were built by nanodescriptors combined with six machine learning algorithms. Among them, random forest (RF) – catalase (CAT), k-neighbors classifier (KNN) - glutathione peroxidase (GPx), neural networks - multilayer perceptron (ANN) – glutathione s-transferase (GST), random forest (RF) - malondialdehyde (MDA), random forest (RF) - reactive oxygen species (ROS), and extreme gradient boosting decision tree (XGB) - superoxide dismutase (SOD) models performed good with high accuracy and balanced accuracy for both training sets and external validation sets. Furthermore, the best model revealed the predominant factors (exposure concentration, exposure periods, and exposure matrix) influencing the oxidative stress induced by nTiO2. These results showed that high exposure concentrations and short exposure-intervals tended to cause oxidative damage to bivalves. In addition, gills and digestive glands could be vulnerable to nTiO2-induced oxidative damage as tissues/organs differences were the important factors controlling MDA activity. This study provided insights into important nano-features responsible for the different indicators of oxidative stress and thereby extended the application of machine learning approaches in toxicological assessment for nanoparticles." @default.
- W4319602008 created "2023-02-09" @default.
- W4319602008 creator A5005228021 @default.
- W4319602008 creator A5010443655 @default.
- W4319602008 creator A5040576935 @default.
- W4319602008 creator A5044222534 @default.
- W4319602008 creator A5084985646 @default.
- W4319602008 date "2023-05-01" @default.
- W4319602008 modified "2023-10-18" @default.
- W4319602008 title "Characterization of oxidative damage induced by nanoparticles via mechanism-driven machine learning approaches" @default.
- W4319602008 cites W1845662692 @default.
- W4319602008 cites W1846979127 @default.
- W4319602008 cites W1940825378 @default.
- W4319602008 cites W1947069830 @default.
- W4319602008 cites W1964123007 @default.
- W4319602008 cites W1965140424 @default.
- W4319602008 cites W1967049079 @default.
- W4319602008 cites W1969653620 @default.
- W4319602008 cites W1971065705 @default.
- W4319602008 cites W1971246481 @default.
- W4319602008 cites W1972110164 @default.
- W4319602008 cites W1972519834 @default.
- W4319602008 cites W1976629569 @default.
- W4319602008 cites W1984681889 @default.
- W4319602008 cites W1984753398 @default.
- W4319602008 cites W1987368050 @default.
- W4319602008 cites W1987642357 @default.
- W4319602008 cites W1997111539 @default.
- W4319602008 cites W1998318474 @default.
- W4319602008 cites W1998651872 @default.
- W4319602008 cites W2000138407 @default.
- W4319602008 cites W2002648932 @default.
- W4319602008 cites W2010095187 @default.
- W4319602008 cites W2013967187 @default.
- W4319602008 cites W2018288887 @default.
- W4319602008 cites W2021055090 @default.
- W4319602008 cites W2022867904 @default.
- W4319602008 cites W2024647684 @default.
- W4319602008 cites W2027178870 @default.
- W4319602008 cites W2030860409 @default.
- W4319602008 cites W2033192435 @default.
- W4319602008 cites W2033757486 @default.
- W4319602008 cites W2037360063 @default.
- W4319602008 cites W2040330716 @default.
- W4319602008 cites W2041643966 @default.
- W4319602008 cites W2043403377 @default.
- W4319602008 cites W2049789122 @default.
- W4319602008 cites W2060515596 @default.
- W4319602008 cites W2065911927 @default.
- W4319602008 cites W2070032426 @default.
- W4319602008 cites W2077307177 @default.
- W4319602008 cites W2078112977 @default.
- W4319602008 cites W2090373192 @default.
- W4319602008 cites W2090507586 @default.
- W4319602008 cites W2092246250 @default.
- W4319602008 cites W2093792053 @default.
- W4319602008 cites W2094301715 @default.
- W4319602008 cites W2095280086 @default.
- W4319602008 cites W2102636708 @default.
- W4319602008 cites W2109894625 @default.
- W4319602008 cites W2110157951 @default.
- W4319602008 cites W2114443210 @default.
- W4319602008 cites W2126519286 @default.
- W4319602008 cites W2132861206 @default.
- W4319602008 cites W2135760757 @default.
- W4319602008 cites W2137959503 @default.
- W4319602008 cites W2148143831 @default.
- W4319602008 cites W2162775522 @default.
- W4319602008 cites W2163814407 @default.
- W4319602008 cites W2169621514 @default.
- W4319602008 cites W2171028270 @default.
- W4319602008 cites W2178188685 @default.
- W4319602008 cites W2209836926 @default.
- W4319602008 cites W2212194599 @default.
- W4319602008 cites W2280549490 @default.
- W4319602008 cites W2280850002 @default.
- W4319602008 cites W2323655897 @default.
- W4319602008 cites W2331783677 @default.
- W4319602008 cites W2342667268 @default.
- W4319602008 cites W2343784013 @default.
- W4319602008 cites W2417642903 @default.
- W4319602008 cites W2467239935 @default.
- W4319602008 cites W2507467632 @default.
- W4319602008 cites W2511855706 @default.
- W4319602008 cites W2520714534 @default.
- W4319602008 cites W2558021646 @default.
- W4319602008 cites W2582505177 @default.
- W4319602008 cites W2586625121 @default.
- W4319602008 cites W2612060048 @default.
- W4319602008 cites W2743611023 @default.
- W4319602008 cites W2766850971 @default.
- W4319602008 cites W2776546150 @default.
- W4319602008 cites W2792166593 @default.
- W4319602008 cites W2793168889 @default.
- W4319602008 cites W2802324910 @default.
- W4319602008 cites W2806999476 @default.
- W4319602008 cites W2809179851 @default.
- W4319602008 cites W2809418223 @default.