Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319602646> ?p ?o ?g. }
- W4319602646 abstract "There has been a growing interest in developing cuff-less blood pressure (BP) estimation methods to enable continuous BP monitoring from electrocardiogram (ECG) and/or photoplethysmogram (PPG) signals. The majority of these methods have been evaluated using publicly-available datasets, however, there exist significant discrepancies across studies with respect to the size, the number of subjects, and the applied pre-processing steps for the data that is eventually used for training and testing the models. Such differences make conducting performance comparison across models largely unfair, and mask the generalization capability of various BP estimation methods. To fill this important gap, this paper presents “PulseDB,” the largest cleaned dataset to date, for benchmarking BP estimation models that also fulfills the requirements of standardized testing protocols. PulseDB contains 1) 5,245,454 high-quality <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML id=IM1><mml:mn>10</mml:mn></mml:math> -s segments of ECG, PPG, and arterial BP (ABP) waveforms from 5,361 subjects retrieved from the MIMIC-III waveform database matched subset and the VitalDB database; 2) subjects’ identification and demographic information, that can be utilized as additional input features to improve the performance of BP estimation models, or to evaluate the generalizability of the models to data from unseen subjects; and 3) positions of the characteristic points of the ECG/PPG signals, making PulseDB directly usable for training deep learning models with minimal data pre-processing. Additionally, using this dataset, we conduct the first study to provide insights about the performance gap between calibration-based and calibration-free testing approaches for evaluating generalizability of the BP estimation models. We expect PulseDB, as a user-friendly, large, comprehensive and multi-functional dataset, to be used as a reliable source for the evaluation of cuff-less BP estimation methods." @default.
- W4319602646 created "2023-02-09" @default.
- W4319602646 creator A5013873685 @default.
- W4319602646 creator A5024009232 @default.
- W4319602646 creator A5025396130 @default.
- W4319602646 creator A5029389730 @default.
- W4319602646 date "2023-02-08" @default.
- W4319602646 modified "2023-10-14" @default.
- W4319602646 title "PulseDB: A large, cleaned dataset based on MIMIC-III and VitalDB for benchmarking cuff-less blood pressure estimation methods" @default.
- W4319602646 cites W1991170684 @default.
- W4319602646 cites W2015795623 @default.
- W4319602646 cites W2021674224 @default.
- W4319602646 cites W2046788142 @default.
- W4319602646 cites W2049755262 @default.
- W4319602646 cites W2087522345 @default.
- W4319602646 cites W2127913883 @default.
- W4319602646 cites W2162273778 @default.
- W4319602646 cites W2396881363 @default.
- W4319602646 cites W2431637923 @default.
- W4319602646 cites W2475064587 @default.
- W4319602646 cites W2522264526 @default.
- W4319602646 cites W2790385199 @default.
- W4319602646 cites W2802068140 @default.
- W4319602646 cites W2885747298 @default.
- W4319602646 cites W2955961229 @default.
- W4319602646 cites W2963712527 @default.
- W4319602646 cites W2965846681 @default.
- W4319602646 cites W2969170900 @default.
- W4319602646 cites W2979877842 @default.
- W4319602646 cites W2981648641 @default.
- W4319602646 cites W2994652673 @default.
- W4319602646 cites W3002052414 @default.
- W4319602646 cites W3023858750 @default.
- W4319602646 cites W3037304592 @default.
- W4319602646 cites W3081617066 @default.
- W4319602646 cites W3099743694 @default.
- W4319602646 cites W3120015513 @default.
- W4319602646 cites W3135184486 @default.
- W4319602646 cites W3138603577 @default.
- W4319602646 cites W3164139332 @default.
- W4319602646 cites W3186099984 @default.
- W4319602646 cites W3200345925 @default.
- W4319602646 cites W3213530928 @default.
- W4319602646 cites W4200295897 @default.
- W4319602646 cites W4200593288 @default.
- W4319602646 cites W4220869671 @default.
- W4319602646 cites W4225612652 @default.
- W4319602646 cites W4229058141 @default.
- W4319602646 cites W4281878921 @default.
- W4319602646 cites W4283009719 @default.
- W4319602646 cites W4283068819 @default.
- W4319602646 cites W4294975206 @default.
- W4319602646 cites W621251951 @default.
- W4319602646 doi "https://doi.org/10.3389/fdgth.2022.1090854" @default.
- W4319602646 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36844249" @default.
- W4319602646 hasPublicationYear "2023" @default.
- W4319602646 type Work @default.
- W4319602646 citedByCount "0" @default.
- W4319602646 crossrefType "journal-article" @default.
- W4319602646 hasAuthorship W4319602646A5013873685 @default.
- W4319602646 hasAuthorship W4319602646A5024009232 @default.
- W4319602646 hasAuthorship W4319602646A5025396130 @default.
- W4319602646 hasAuthorship W4319602646A5029389730 @default.
- W4319602646 hasBestOaLocation W43196026461 @default.
- W4319602646 hasConcept C105795698 @default.
- W4319602646 hasConcept C106131492 @default.
- W4319602646 hasConcept C116390426 @default.
- W4319602646 hasConcept C119857082 @default.
- W4319602646 hasConcept C124101348 @default.
- W4319602646 hasConcept C127413603 @default.
- W4319602646 hasConcept C134306372 @default.
- W4319602646 hasConcept C144133560 @default.
- W4319602646 hasConcept C153180895 @default.
- W4319602646 hasConcept C154945302 @default.
- W4319602646 hasConcept C162853370 @default.
- W4319602646 hasConcept C177148314 @default.
- W4319602646 hasConcept C201995342 @default.
- W4319602646 hasConcept C27158222 @default.
- W4319602646 hasConcept C31972630 @default.
- W4319602646 hasConcept C33923547 @default.
- W4319602646 hasConcept C41008148 @default.
- W4319602646 hasConcept C86251818 @default.
- W4319602646 hasConcept C96250715 @default.
- W4319602646 hasConceptScore W4319602646C105795698 @default.
- W4319602646 hasConceptScore W4319602646C106131492 @default.
- W4319602646 hasConceptScore W4319602646C116390426 @default.
- W4319602646 hasConceptScore W4319602646C119857082 @default.
- W4319602646 hasConceptScore W4319602646C124101348 @default.
- W4319602646 hasConceptScore W4319602646C127413603 @default.
- W4319602646 hasConceptScore W4319602646C134306372 @default.
- W4319602646 hasConceptScore W4319602646C144133560 @default.
- W4319602646 hasConceptScore W4319602646C153180895 @default.
- W4319602646 hasConceptScore W4319602646C154945302 @default.
- W4319602646 hasConceptScore W4319602646C162853370 @default.
- W4319602646 hasConceptScore W4319602646C177148314 @default.
- W4319602646 hasConceptScore W4319602646C201995342 @default.
- W4319602646 hasConceptScore W4319602646C27158222 @default.
- W4319602646 hasConceptScore W4319602646C31972630 @default.
- W4319602646 hasConceptScore W4319602646C33923547 @default.
- W4319602646 hasConceptScore W4319602646C41008148 @default.