Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319660015> ?p ?o ?g. }
- W4319660015 endingPage "1809" @default.
- W4319660015 startingPage "1789" @default.
- W4319660015 abstract "Due to the rapid propagation characteristic of the Coronavirus (COVID-19) disease, manual diagnostic methods cannot handle the large number of infected individuals to prevent the spread of infection. Despite, new automated diagnostic methods have been brought on board, particularly methods based on artificial intelligence using different medical data such as X-ray imaging. Thoracic imaging, for example, produces several image types that can be processed and analyzed by machine and deep learning methods. X-ray imaging materials widely exist in most hospitals and health institutes since they are affordable compared to other imaging machines. Through this paper, we propose a novel Convolutional Neural Network (CNN) model (COV2Net) that can detect COVID-19 virus by analyzing the X-ray images of suspected patients. This model is trained on a dataset containing thousands of X-ray images collected from different sources. The model was tested and evaluated on an independent dataset. In order to approve the performance of the proposed model, three CNN models namely Mobile-Net, Residential Energy Services Network (Res-Net), and Visual Geometry Group 16 (VGG-16) have been implemented using transfer learning technique. This experiment consists of a multi-label classification task based on X-ray images for normal patients, patients infected by COVID-19 virus and other patients infected with pneumonia. This proposed model is empowered with Gradient-weighted Class Activation Mapping (Grad-CAM) and Grad-Cam++ techniques for a visual explanation and methodology debugging goal. The finding results show that the proposed model COV2Net outperforms the state-of-the-art methods." @default.
- W4319660015 created "2023-02-10" @default.
- W4319660015 creator A5005065236 @default.
- W4319660015 creator A5018312503 @default.
- W4319660015 creator A5018844842 @default.
- W4319660015 creator A5028393414 @default.
- W4319660015 creator A5067519709 @default.
- W4319660015 creator A5070447055 @default.
- W4319660015 creator A5070703366 @default.
- W4319660015 creator A5085438363 @default.
- W4319660015 creator A5089757453 @default.
- W4319660015 date "2023-01-01" @default.
- W4319660015 modified "2023-10-05" @default.
- W4319660015 title "A Novel Explainable CNN Model for Screening COVID-19 on X-ray Images" @default.
- W4319660015 cites W1968022266 @default.
- W4319660015 cites W2022464860 @default.
- W4319660015 cites W2146655366 @default.
- W4319660015 cites W2576404523 @default.
- W4319660015 cites W2803393527 @default.
- W4319660015 cites W2809254203 @default.
- W4319660015 cites W2913292019 @default.
- W4319660015 cites W2914337210 @default.
- W4319660015 cites W2914762504 @default.
- W4319660015 cites W2922015385 @default.
- W4319660015 cites W2966397899 @default.
- W4319660015 cites W2999613663 @default.
- W4319660015 cites W3008443627 @default.
- W4319660015 cites W3010609078 @default.
- W4319660015 cites W3012189167 @default.
- W4319660015 cites W3017855299 @default.
- W4319660015 cites W3025953162 @default.
- W4319660015 cites W3033616466 @default.
- W4319660015 cites W3036638392 @default.
- W4319660015 cites W3092136311 @default.
- W4319660015 cites W3101633406 @default.
- W4319660015 cites W3102564565 @default.
- W4319660015 cites W3103753223 @default.
- W4319660015 cites W3105081694 @default.
- W4319660015 cites W3108492058 @default.
- W4319660015 cites W3120400911 @default.
- W4319660015 cites W3120806310 @default.
- W4319660015 cites W3125038622 @default.
- W4319660015 cites W3127990383 @default.
- W4319660015 cites W3129225064 @default.
- W4319660015 cites W3132896347 @default.
- W4319660015 cites W3134904020 @default.
- W4319660015 cites W3162351260 @default.
- W4319660015 cites W3165071810 @default.
- W4319660015 cites W3197191455 @default.
- W4319660015 cites W3198023392 @default.
- W4319660015 cites W4281650121 @default.
- W4319660015 doi "https://doi.org/10.32604/csse.2023.034022" @default.
- W4319660015 hasPublicationYear "2023" @default.
- W4319660015 type Work @default.
- W4319660015 citedByCount "0" @default.
- W4319660015 crossrefType "journal-article" @default.
- W4319660015 hasAuthorship W4319660015A5005065236 @default.
- W4319660015 hasAuthorship W4319660015A5018312503 @default.
- W4319660015 hasAuthorship W4319660015A5018844842 @default.
- W4319660015 hasAuthorship W4319660015A5028393414 @default.
- W4319660015 hasAuthorship W4319660015A5067519709 @default.
- W4319660015 hasAuthorship W4319660015A5070447055 @default.
- W4319660015 hasAuthorship W4319660015A5070703366 @default.
- W4319660015 hasAuthorship W4319660015A5085438363 @default.
- W4319660015 hasAuthorship W4319660015A5089757453 @default.
- W4319660015 hasBestOaLocation W43196600151 @default.
- W4319660015 hasConcept C108583219 @default.
- W4319660015 hasConcept C115961682 @default.
- W4319660015 hasConcept C119857082 @default.
- W4319660015 hasConcept C142724271 @default.
- W4319660015 hasConcept C150899416 @default.
- W4319660015 hasConcept C153180895 @default.
- W4319660015 hasConcept C154945302 @default.
- W4319660015 hasConcept C2779134260 @default.
- W4319660015 hasConcept C3008058167 @default.
- W4319660015 hasConcept C31601959 @default.
- W4319660015 hasConcept C31972630 @default.
- W4319660015 hasConcept C41008148 @default.
- W4319660015 hasConcept C50644808 @default.
- W4319660015 hasConcept C524204448 @default.
- W4319660015 hasConcept C71924100 @default.
- W4319660015 hasConcept C81363708 @default.
- W4319660015 hasConcept C9417928 @default.
- W4319660015 hasConceptScore W4319660015C108583219 @default.
- W4319660015 hasConceptScore W4319660015C115961682 @default.
- W4319660015 hasConceptScore W4319660015C119857082 @default.
- W4319660015 hasConceptScore W4319660015C142724271 @default.
- W4319660015 hasConceptScore W4319660015C150899416 @default.
- W4319660015 hasConceptScore W4319660015C153180895 @default.
- W4319660015 hasConceptScore W4319660015C154945302 @default.
- W4319660015 hasConceptScore W4319660015C2779134260 @default.
- W4319660015 hasConceptScore W4319660015C3008058167 @default.
- W4319660015 hasConceptScore W4319660015C31601959 @default.
- W4319660015 hasConceptScore W4319660015C31972630 @default.
- W4319660015 hasConceptScore W4319660015C41008148 @default.
- W4319660015 hasConceptScore W4319660015C50644808 @default.
- W4319660015 hasConceptScore W4319660015C524204448 @default.
- W4319660015 hasConceptScore W4319660015C71924100 @default.