Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319660981> ?p ?o ?g. }
- W4319660981 endingPage "671" @default.
- W4319660981 startingPage "653" @default.
- W4319660981 abstract "Abstract. Our current knowledge of spatial and temporal snow depth trends is based almost exclusively on time series of non-homogenised observational data. However, like other long-term series from observations, they are prone to inhomogeneities that can influence and even change trends if not taken into account. In order to assess the relevance of homogenisation for time-series analysis of daily snow depths, we investigated the effects of adjusting inhomogeneities in the extensive network of Swiss snow depth observations for trends and changes in extreme values of commonly used snow indices, such as snow days, seasonal averages or maximum snow depths in the period 1961–2021. Three homogenisation methods were compared for this task: Climatol and HOMER, which apply median-based adjustments, and the quantile-based interpQM. All three were run using the same input data with identical break points. We found that they agree well on trends of seasonal average snow depth, while differences are detectable for seasonal maxima and the corresponding extreme values. Differences between homogenised and non-homogenised series result mainly from the approach for generating reference series. The comparison of homogenised and original values for the 50-year return level of seasonal maximum snow depth showed that the quantile-based method had the smallest number of stations outside the 95 % confidence interval. Using a multiple-criteria approach, e.g. thresholds for series correlation (>0.7) as well as for vertical (<300 m) and horizontal (<100 km) distances, proved to be better suited than using correlation or distances alone. Overall, the homogenisation of snow depth series changed all positive trends for derived series of snow days to either no trend or negative trends and amplifying the negative mean trend, especially for stations >1500 m. The number of stations with a significant negative trend increased between 7 % and 21 % depending on the method, with the strongest changes occurring at high snow depths. The reduction in the 95 % confidence intervals of the absolute maximum snow depth of each station indicates a decrease in variation and an increase in confidence in the results." @default.
- W4319660981 created "2023-02-10" @default.
- W4319660981 creator A5006537377 @default.
- W4319660981 creator A5022045684 @default.
- W4319660981 creator A5053781482 @default.
- W4319660981 creator A5065572669 @default.
- W4319660981 creator A5075130951 @default.
- W4319660981 creator A5086430929 @default.
- W4319660981 creator A5089443315 @default.
- W4319660981 date "2023-02-09" @default.
- W4319660981 modified "2023-10-14" @default.
- W4319660981 title "The benefits of homogenising snow depth series – Impacts on decadal trends and extremes for Switzerland" @default.
- W4319660981 cites W1582543095 @default.
- W4319660981 cites W1864249513 @default.
- W4319660981 cites W1972257872 @default.
- W4319660981 cites W1974080586 @default.
- W4319660981 cites W1985598720 @default.
- W4319660981 cites W1987986272 @default.
- W4319660981 cites W1993189961 @default.
- W4319660981 cites W1999051747 @default.
- W4319660981 cites W2008720804 @default.
- W4319660981 cites W2018764772 @default.
- W4319660981 cites W2021436787 @default.
- W4319660981 cites W2022489840 @default.
- W4319660981 cites W2029387840 @default.
- W4319660981 cites W2039043540 @default.
- W4319660981 cites W2039274523 @default.
- W4319660981 cites W2062205995 @default.
- W4319660981 cites W2099736875 @default.
- W4319660981 cites W2102131769 @default.
- W4319660981 cites W2110558516 @default.
- W4319660981 cites W2119554316 @default.
- W4319660981 cites W2124079402 @default.
- W4319660981 cites W2129161539 @default.
- W4319660981 cites W2133064155 @default.
- W4319660981 cites W2168221443 @default.
- W4319660981 cites W2206732676 @default.
- W4319660981 cites W2318680928 @default.
- W4319660981 cites W2516934950 @default.
- W4319660981 cites W2531842562 @default.
- W4319660981 cites W2567831501 @default.
- W4319660981 cites W2593930412 @default.
- W4319660981 cites W2739782441 @default.
- W4319660981 cites W2756157265 @default.
- W4319660981 cites W2766597251 @default.
- W4319660981 cites W2887293259 @default.
- W4319660981 cites W2897850984 @default.
- W4319660981 cites W2899386314 @default.
- W4319660981 cites W2914728436 @default.
- W4319660981 cites W2939281873 @default.
- W4319660981 cites W2982678346 @default.
- W4319660981 cites W2990427812 @default.
- W4319660981 cites W3005477378 @default.
- W4319660981 cites W3025949386 @default.
- W4319660981 cites W3028009944 @default.
- W4319660981 cites W3090297748 @default.
- W4319660981 cites W3092564748 @default.
- W4319660981 cites W3165236169 @default.
- W4319660981 cites W3187837962 @default.
- W4319660981 cites W3194296927 @default.
- W4319660981 cites W3211389156 @default.
- W4319660981 cites W4223993627 @default.
- W4319660981 cites W4281705372 @default.
- W4319660981 cites W4281773040 @default.
- W4319660981 doi "https://doi.org/10.5194/tc-17-653-2023" @default.
- W4319660981 hasPublicationYear "2023" @default.
- W4319660981 type Work @default.
- W4319660981 citedByCount "0" @default.
- W4319660981 crossrefType "journal-article" @default.
- W4319660981 hasAuthorship W4319660981A5006537377 @default.
- W4319660981 hasAuthorship W4319660981A5022045684 @default.
- W4319660981 hasAuthorship W4319660981A5053781482 @default.
- W4319660981 hasAuthorship W4319660981A5065572669 @default.
- W4319660981 hasAuthorship W4319660981A5075130951 @default.
- W4319660981 hasAuthorship W4319660981A5086430929 @default.
- W4319660981 hasAuthorship W4319660981A5089443315 @default.
- W4319660981 hasBestOaLocation W43196609811 @default.
- W4319660981 hasConcept C100970517 @default.
- W4319660981 hasConcept C105795698 @default.
- W4319660981 hasConcept C118671147 @default.
- W4319660981 hasConcept C127313418 @default.
- W4319660981 hasConcept C142362112 @default.
- W4319660981 hasConcept C143724316 @default.
- W4319660981 hasConcept C147581598 @default.
- W4319660981 hasConcept C151730666 @default.
- W4319660981 hasConcept C153294291 @default.
- W4319660981 hasConcept C197046000 @default.
- W4319660981 hasConcept C205649164 @default.
- W4319660981 hasConcept C33923547 @default.
- W4319660981 hasConcept C39432304 @default.
- W4319660981 hasConcept C49204034 @default.
- W4319660981 hasConcept C52119013 @default.
- W4319660981 hasConcept C554144382 @default.
- W4319660981 hasConcept C91528185 @default.
- W4319660981 hasConceptScore W4319660981C100970517 @default.
- W4319660981 hasConceptScore W4319660981C105795698 @default.
- W4319660981 hasConceptScore W4319660981C118671147 @default.
- W4319660981 hasConceptScore W4319660981C127313418 @default.