Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319661755> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4319661755 abstract "Traditional skin cancer screening necessitates a time-consuming physical examination by a dermatologist. One of the most difficult tasks in image analysis is automated medical picture recognition and categorization. Making a skin-based analysis to predict the abnormalities present in a particular area is always a competitive issue. In the case of automatic region identification, deep learning (DL) methodologies play a major role. Most DL approaches are unable to offer uncertainty quantification (UQ) for the output, resulting in overconfidence and excessive sample deviation. The dataset was contributed by the International Skin Image Collaboration (ISIC) Archive. To deal with uncertainty during skin cancer image classification and disappearing gradients, we used Monte-Carlo (MC) dropout with the ResNet 50 DL model. This assists in overcoming the problem of vanishing gradients. After the preprocessing, the training was completed, yielding a 94% accuracy rate. The MC dropout method identifies the out-of-domain data, reduces the training size which results in an accuracy of 89.9%. As a result, the ResNet50 model for classifying skin cancer achieved 89% of accuracy. In addition, our model was in general robust to noise and performed well with previously unseen data." @default.
- W4319661755 created "2023-02-10" @default.
- W4319661755 creator A5024163735 @default.
- W4319661755 creator A5030218448 @default.
- W4319661755 creator A5036044217 @default.
- W4319661755 creator A5043085840 @default.
- W4319661755 creator A5073590996 @default.
- W4319661755 creator A5074500580 @default.
- W4319661755 date "2023-03-01" @default.
- W4319661755 modified "2023-09-30" @default.
- W4319661755 title "Uncertainty Quantification to Improve the Classification of Melanoma and Basal Skin Cancer Using ResNet Model" @default.
- W4319661755 cites W2022060285 @default.
- W4319661755 cites W2036167076 @default.
- W4319661755 cites W2557738935 @default.
- W4319661755 cites W2605253636 @default.
- W4319661755 cites W2788633781 @default.
- W4319661755 cites W2790299667 @default.
- W4319661755 cites W2892851070 @default.
- W4319661755 cites W2911653980 @default.
- W4319661755 cites W2952436003 @default.
- W4319661755 cites W2969546126 @default.
- W4319661755 cites W3012661000 @default.
- W4319661755 cites W3073352144 @default.
- W4319661755 cites W3081899694 @default.
- W4319661755 cites W3097832380 @default.
- W4319661755 cites W3102100346 @default.
- W4319661755 cites W3110529192 @default.
- W4319661755 cites W3122440835 @default.
- W4319661755 cites W3160890506 @default.
- W4319661755 cites W3174975035 @default.
- W4319661755 cites W3178046838 @default.
- W4319661755 cites W3189955102 @default.
- W4319661755 cites W3199079242 @default.
- W4319661755 cites W3206580474 @default.
- W4319661755 cites W4210613509 @default.
- W4319661755 cites W4230222993 @default.
- W4319661755 cites W4375821555 @default.
- W4319661755 doi "https://doi.org/10.1142/s1752890922420107" @default.
- W4319661755 hasPublicationYear "2023" @default.
- W4319661755 type Work @default.
- W4319661755 citedByCount "1" @default.
- W4319661755 countsByYear W43196617552023 @default.
- W4319661755 crossrefType "journal-article" @default.
- W4319661755 hasAuthorship W4319661755A5024163735 @default.
- W4319661755 hasAuthorship W4319661755A5030218448 @default.
- W4319661755 hasAuthorship W4319661755A5036044217 @default.
- W4319661755 hasAuthorship W4319661755A5043085840 @default.
- W4319661755 hasAuthorship W4319661755A5073590996 @default.
- W4319661755 hasAuthorship W4319661755A5074500580 @default.
- W4319661755 hasConcept C108583219 @default.
- W4319661755 hasConcept C119857082 @default.
- W4319661755 hasConcept C121608353 @default.
- W4319661755 hasConcept C126322002 @default.
- W4319661755 hasConcept C153180895 @default.
- W4319661755 hasConcept C154945302 @default.
- W4319661755 hasConcept C2776145597 @default.
- W4319661755 hasConcept C2777789703 @default.
- W4319661755 hasConcept C34736171 @default.
- W4319661755 hasConcept C41008148 @default.
- W4319661755 hasConcept C71924100 @default.
- W4319661755 hasConceptScore W4319661755C108583219 @default.
- W4319661755 hasConceptScore W4319661755C119857082 @default.
- W4319661755 hasConceptScore W4319661755C121608353 @default.
- W4319661755 hasConceptScore W4319661755C126322002 @default.
- W4319661755 hasConceptScore W4319661755C153180895 @default.
- W4319661755 hasConceptScore W4319661755C154945302 @default.
- W4319661755 hasConceptScore W4319661755C2776145597 @default.
- W4319661755 hasConceptScore W4319661755C2777789703 @default.
- W4319661755 hasConceptScore W4319661755C34736171 @default.
- W4319661755 hasConceptScore W4319661755C41008148 @default.
- W4319661755 hasConceptScore W4319661755C71924100 @default.
- W4319661755 hasIssue "01" @default.
- W4319661755 hasLocation W43196617551 @default.
- W4319661755 hasOpenAccess W4319661755 @default.
- W4319661755 hasPrimaryLocation W43196617551 @default.
- W4319661755 hasRelatedWork W3159690776 @default.
- W4319661755 hasRelatedWork W3186919929 @default.
- W4319661755 hasRelatedWork W4211209597 @default.
- W4319661755 hasRelatedWork W4220785415 @default.
- W4319661755 hasRelatedWork W4223943233 @default.
- W4319661755 hasRelatedWork W4280592718 @default.
- W4319661755 hasRelatedWork W4290612991 @default.
- W4319661755 hasRelatedWork W4295190261 @default.
- W4319661755 hasRelatedWork W4312863455 @default.
- W4319661755 hasRelatedWork W4320882205 @default.
- W4319661755 hasVolume "16" @default.
- W4319661755 isParatext "false" @default.
- W4319661755 isRetracted "false" @default.
- W4319661755 workType "article" @default.