Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319662020> ?p ?o ?g. }
- W4319662020 endingPage "454" @default.
- W4319662020 startingPage "449" @default.
- W4319662020 abstract "Artificial intelligence (AI)-based algorithms have been developed to facilitate rapid and accurate computed tomography angiography (CTA) assessment in proximal large vessel occlusion (LVO) acute ischemic stroke, including internal carotid artery and M1 occlusions. In clinical practice, however, the detection of medium vessel occlusion (MeVO) represents an ongoing diagnostic challenge in which the added value of AI remains unclear. To assess the diagnostic performance of AI platforms for detecting M2 occlusions. Studies that report the diagnostic performance of AI-based detection of M2 occlusions were screened, and sensitivity and specificity data were extracted using the semi-automated AutoLit software (Nested Knowledge, MN) platform. STATA (version 16 IC; Stata Corporation, College Station, Texas, USA) was used to conduct all analyses. Eight studies with a low risk of bias and significant heterogeneity were included in the quantitative and qualitative synthesis. The pooled estimates of sensitivity and specificity of AI platforms for M2 occlusion detection were 64% (95% CI, 53 to 74%) and 97% (95% CI, 84 to 100%), respectively. The area under the curve (AUC) in the SROC curve was 0.79 (95% CI, 0.74 to 0.83). The current performance of the AI-based algorithm makes it more suitable as an adjunctive confirmatory tool rather than as an independent one for M2 occlusions. With the rapid development of such algorithms, it is anticipated that newer generations will likely perform much better." @default.
- W4319662020 created "2023-02-10" @default.
- W4319662020 creator A5000937822 @default.
- W4319662020 creator A5002112140 @default.
- W4319662020 creator A5006164143 @default.
- W4319662020 creator A5006225939 @default.
- W4319662020 creator A5027649635 @default.
- W4319662020 creator A5030498127 @default.
- W4319662020 creator A5033405400 @default.
- W4319662020 creator A5044703379 @default.
- W4319662020 creator A5049030826 @default.
- W4319662020 creator A5084779795 @default.
- W4319662020 creator A5090296288 @default.
- W4319662020 date "2023-06-01" @default.
- W4319662020 modified "2023-09-27" @default.
- W4319662020 title "The diagnostic performance of artificial intelligence algorithms for identifying M2 segment middle cerebral artery occlusions: A systematic review and meta-analysis" @default.
- W4319662020 cites W1979857261 @default.
- W4319662020 cites W2020488794 @default.
- W4319662020 cites W2107638293 @default.
- W4319662020 cites W2107704185 @default.
- W4319662020 cites W2308250829 @default.
- W4319662020 cites W2589611212 @default.
- W4319662020 cites W2767776410 @default.
- W4319662020 cites W2775118070 @default.
- W4319662020 cites W2787867590 @default.
- W4319662020 cites W2795910960 @default.
- W4319662020 cites W2889969626 @default.
- W4319662020 cites W2913987129 @default.
- W4319662020 cites W2945262631 @default.
- W4319662020 cites W2958072245 @default.
- W4319662020 cites W2966599474 @default.
- W4319662020 cites W2976907604 @default.
- W4319662020 cites W2979307665 @default.
- W4319662020 cites W2987338144 @default.
- W4319662020 cites W2996144013 @default.
- W4319662020 cites W3011436138 @default.
- W4319662020 cites W3013968448 @default.
- W4319662020 cites W3025376851 @default.
- W4319662020 cites W3049565965 @default.
- W4319662020 cites W3081078899 @default.
- W4319662020 cites W3087761373 @default.
- W4319662020 cites W3091082337 @default.
- W4319662020 cites W3104427077 @default.
- W4319662020 cites W3116932816 @default.
- W4319662020 cites W3119862285 @default.
- W4319662020 cites W3119944003 @default.
- W4319662020 cites W3135603239 @default.
- W4319662020 cites W3183580910 @default.
- W4319662020 cites W3214625743 @default.
- W4319662020 doi "https://doi.org/10.1016/j.neurad.2023.02.001" @default.
- W4319662020 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36773845" @default.
- W4319662020 hasPublicationYear "2023" @default.
- W4319662020 type Work @default.
- W4319662020 citedByCount "3" @default.
- W4319662020 countsByYear W43196620202023 @default.
- W4319662020 crossrefType "journal-article" @default.
- W4319662020 hasAuthorship W4319662020A5000937822 @default.
- W4319662020 hasAuthorship W4319662020A5002112140 @default.
- W4319662020 hasAuthorship W4319662020A5006164143 @default.
- W4319662020 hasAuthorship W4319662020A5006225939 @default.
- W4319662020 hasAuthorship W4319662020A5027649635 @default.
- W4319662020 hasAuthorship W4319662020A5030498127 @default.
- W4319662020 hasAuthorship W4319662020A5033405400 @default.
- W4319662020 hasAuthorship W4319662020A5044703379 @default.
- W4319662020 hasAuthorship W4319662020A5049030826 @default.
- W4319662020 hasAuthorship W4319662020A5084779795 @default.
- W4319662020 hasAuthorship W4319662020A5090296288 @default.
- W4319662020 hasBestOaLocation W43196620201 @default.
- W4319662020 hasConcept C11413529 @default.
- W4319662020 hasConcept C119857082 @default.
- W4319662020 hasConcept C126322002 @default.
- W4319662020 hasConcept C126838900 @default.
- W4319662020 hasConcept C127413603 @default.
- W4319662020 hasConcept C154945302 @default.
- W4319662020 hasConcept C2775841333 @default.
- W4319662020 hasConcept C2776268601 @default.
- W4319662020 hasConcept C2778333808 @default.
- W4319662020 hasConcept C2780643987 @default.
- W4319662020 hasConcept C2780645631 @default.
- W4319662020 hasConcept C41008148 @default.
- W4319662020 hasConcept C541997718 @default.
- W4319662020 hasConcept C58471807 @default.
- W4319662020 hasConcept C71924100 @default.
- W4319662020 hasConcept C78519656 @default.
- W4319662020 hasConcept C95190672 @default.
- W4319662020 hasConceptScore W4319662020C11413529 @default.
- W4319662020 hasConceptScore W4319662020C119857082 @default.
- W4319662020 hasConceptScore W4319662020C126322002 @default.
- W4319662020 hasConceptScore W4319662020C126838900 @default.
- W4319662020 hasConceptScore W4319662020C127413603 @default.
- W4319662020 hasConceptScore W4319662020C154945302 @default.
- W4319662020 hasConceptScore W4319662020C2775841333 @default.
- W4319662020 hasConceptScore W4319662020C2776268601 @default.
- W4319662020 hasConceptScore W4319662020C2778333808 @default.
- W4319662020 hasConceptScore W4319662020C2780643987 @default.
- W4319662020 hasConceptScore W4319662020C2780645631 @default.
- W4319662020 hasConceptScore W4319662020C41008148 @default.
- W4319662020 hasConceptScore W4319662020C541997718 @default.