Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319662801> ?p ?o ?g. }
- W4319662801 endingPage "3609" @default.
- W4319662801 startingPage "3598" @default.
- W4319662801 abstract "InP quantum dots (QDs) are the material of choice for QD display applications and have been used as active layers in QD light-emitting diodes (QDLEDs) with high efficiency and color purity. Optimizing the color purity of QDs requires understanding mechanisms of spectral broadening. While ensemble-level broadening can be minimized by synthetic tuning to yield monodisperse QD sizes, single QD line widths are broadened by exciton-phonon scattering and fine-structure splitting. Here, using photon-correlation Fourier spectroscopy, we extract average single QD line widths of 50 meV at 293 K for red-emitting InP/ZnSe/ZnS QDs, among the narrowest for colloidal QDs. We measure InP/ZnSe/ZnS single QD emission line shapes at temperatures between 4 and 293 K and model the spectra using a modified independent boson model. We find that inelastic acoustic phonon scattering and fine-structure splitting are the most prominent broadening mechanisms at low temperatures, whereas pure dephasing from elastic acoustic phonon scattering is the primary broadening mechanism at elevated temperatures, and optical phonon scattering contributes minimally across all temperatures. Conversely for CdSe/CdS/ZnS QDs, we find that optical phonon scattering is a larger contributor to the line shape at elevated temperatures, leading to intrinsically broader single-dot line widths than for InP/ZnSe/ZnS. We are able to reconcile narrow low-temperature line widths and broad room-temperature line widths within a self-consistent model that enables parametrization of line width broadening, for different material classes. This can be used for the rational design of more spectrally narrow materials. Our findings reveal that red-emitting InP/ZnSe/ZnS QDs have intrinsically narrower line widths than typically synthesized CdSe QDs, suggesting that these materials could be used to realize QDLEDs with high color purity." @default.
- W4319662801 created "2023-02-10" @default.
- W4319662801 creator A5023380455 @default.
- W4319662801 creator A5026797153 @default.
- W4319662801 creator A5032823864 @default.
- W4319662801 creator A5035590680 @default.
- W4319662801 creator A5036365552 @default.
- W4319662801 creator A5044763850 @default.
- W4319662801 creator A5057090464 @default.
- W4319662801 creator A5057550873 @default.
- W4319662801 creator A5063731184 @default.
- W4319662801 creator A5081102413 @default.
- W4319662801 creator A5084978080 @default.
- W4319662801 date "2023-02-09" @default.
- W4319662801 modified "2023-10-10" @default.
- W4319662801 title "Narrow Intrinsic Line Widths and Electron–Phonon Coupling of InP Colloidal Quantum Dots" @default.
- W4319662801 cites W1973286783 @default.
- W4319662801 cites W1992451491 @default.
- W4319662801 cites W1994765806 @default.
- W4319662801 cites W1999183149 @default.
- W4319662801 cites W2004324472 @default.
- W4319662801 cites W2008054188 @default.
- W4319662801 cites W2009416397 @default.
- W4319662801 cites W2013946694 @default.
- W4319662801 cites W2016225667 @default.
- W4319662801 cites W2017932648 @default.
- W4319662801 cites W2028488271 @default.
- W4319662801 cites W2030485236 @default.
- W4319662801 cites W2032237348 @default.
- W4319662801 cites W2044543075 @default.
- W4319662801 cites W2044915119 @default.
- W4319662801 cites W2046102667 @default.
- W4319662801 cites W2052543245 @default.
- W4319662801 cites W2061868364 @default.
- W4319662801 cites W2063575064 @default.
- W4319662801 cites W2064643885 @default.
- W4319662801 cites W2082454728 @default.
- W4319662801 cites W2086330460 @default.
- W4319662801 cites W2087273713 @default.
- W4319662801 cites W2088239702 @default.
- W4319662801 cites W2090716448 @default.
- W4319662801 cites W2094805502 @default.
- W4319662801 cites W2136991339 @default.
- W4319662801 cites W2148250405 @default.
- W4319662801 cites W2148924929 @default.
- W4319662801 cites W2286353836 @default.
- W4319662801 cites W2295591110 @default.
- W4319662801 cites W2325567685 @default.
- W4319662801 cites W2471943417 @default.
- W4319662801 cites W2596665764 @default.
- W4319662801 cites W2601902430 @default.
- W4319662801 cites W2795128199 @default.
- W4319662801 cites W2808790142 @default.
- W4319662801 cites W2883803916 @default.
- W4319662801 cites W2905929338 @default.
- W4319662801 cites W2962845988 @default.
- W4319662801 cites W2972531735 @default.
- W4319662801 cites W2991351626 @default.
- W4319662801 cites W3012263184 @default.
- W4319662801 cites W3048512972 @default.
- W4319662801 cites W3133307019 @default.
- W4319662801 cites W3153866502 @default.
- W4319662801 cites W3161207992 @default.
- W4319662801 cites W3206913723 @default.
- W4319662801 cites W4220776672 @default.
- W4319662801 doi "https://doi.org/10.1021/acsnano.2c10237" @default.
- W4319662801 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36758155" @default.
- W4319662801 hasPublicationYear "2023" @default.
- W4319662801 type Work @default.
- W4319662801 citedByCount "5" @default.
- W4319662801 countsByYear W43196628012023 @default.
- W4319662801 crossrefType "journal-article" @default.
- W4319662801 hasAuthorship W4319662801A5023380455 @default.
- W4319662801 hasAuthorship W4319662801A5026797153 @default.
- W4319662801 hasAuthorship W4319662801A5032823864 @default.
- W4319662801 hasAuthorship W4319662801A5035590680 @default.
- W4319662801 hasAuthorship W4319662801A5036365552 @default.
- W4319662801 hasAuthorship W4319662801A5044763850 @default.
- W4319662801 hasAuthorship W4319662801A5057090464 @default.
- W4319662801 hasAuthorship W4319662801A5057550873 @default.
- W4319662801 hasAuthorship W4319662801A5063731184 @default.
- W4319662801 hasAuthorship W4319662801A5081102413 @default.
- W4319662801 hasAuthorship W4319662801A5084978080 @default.
- W4319662801 hasConcept C120665830 @default.
- W4319662801 hasConcept C121332964 @default.
- W4319662801 hasConcept C124657808 @default.
- W4319662801 hasConcept C1276947 @default.
- W4319662801 hasConcept C137029179 @default.
- W4319662801 hasConcept C17729963 @default.
- W4319662801 hasConcept C191486275 @default.
- W4319662801 hasConcept C192562407 @default.
- W4319662801 hasConcept C24169881 @default.
- W4319662801 hasConcept C26873012 @default.
- W4319662801 hasConcept C32891209 @default.
- W4319662801 hasConcept C41999313 @default.
- W4319662801 hasConcept C4839761 @default.
- W4319662801 hasConcept C49023278 @default.
- W4319662801 hasConcept C49040817 @default.