Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319663642> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4319663642 endingPage "13703" @default.
- W4319663642 startingPage "13690" @default.
- W4319663642 abstract "Simultaneous Localization and Mapping (SLAM) is the core technology of the intelligent robot system, and it is also the basis for its autonomous movement. In recent years, it has been found that SLAM using a single sensor has certain limitations, such as Inertial Measurement Unit (IMU) noise and serious drift, and 2D radar can only detect environmental information on the same horizontal plane. In this regard, this paper constructs a multi-sensor back-end fusion SLAM algorithm that combines vision, laser, encoder and IMU information. Experiments have proved that compared with using a single sensor, the application of a multi-sensor fusion system makes the edges of the constructed map clearer and the noise reduced. Aiming at the problem of increased calculation caused by particle degradation and too many particles, this paper improves the Gmappping algorithm, and uses the combination of selective resampling and Kullback-Leibler Distance (KLD) sampling to complete resampling. It has been proved by experiments that compared with the original algorithm of Gmapping, the application of the improved algorithm increases the particle convergence speed by 39.85% in the process of indoor mapping. Aiming at the problems that the traditional loop detection algorithm is easily affected by environmental factors, resulting in low detection accuracy, and the loop detection algorithm based on deep convolutional neural network has a large amount of calculation and takes a long time to detect. The main research of this paper is to apply a deep learning-based loop detection algorithm on the multi-sensor fusion framework, and use the combination of high-dimensional and low-dimensional features of the image for loop detection. This paper uses different algorithms to conduct comparative experiments on the dataset CityCentre. The experimental results show that compared with the traditional algorithms Bag of Words (BoW), AlexNet algorithm, VGG19 algorithm, and ResNet32 algorithm, the accuracy of the algorithm proposed in this paper has increased by 31.26%, 14.21%, 3.05%, and 1.56%, respectively. In addition, the comparison experiment results of SLAM mapping with the original Real-Time Appearance-Based Mapping (RTAB-MAP) algorithm prove that the loop closure detection algorithm based on deep learning proposed in this paper can enable the system to better build a globally consistent map, including more environmental information." @default.
- W4319663642 created "2023-02-10" @default.
- W4319663642 creator A5008762379 @default.
- W4319663642 creator A5013688414 @default.
- W4319663642 creator A5036662578 @default.
- W4319663642 creator A5078525240 @default.
- W4319663642 creator A5080148523 @default.
- W4319663642 date "2023-01-01" @default.
- W4319663642 modified "2023-09-30" @default.
- W4319663642 title "Research on Multi-Sensor Fusion SLAM Algorithm Based on Improved Gmapping" @default.
- W4319663642 cites W1471681750 @default.
- W4319663642 cites W1512698229 @default.
- W4319663642 cites W2005389775 @default.
- W4319663642 cites W2160547335 @default.
- W4319663642 cites W2321792876 @default.
- W4319663642 cites W2411093439 @default.
- W4319663642 cites W2419416064 @default.
- W4319663642 cites W2556215627 @default.
- W4319663642 cites W2738816079 @default.
- W4319663642 cites W2745859992 @default.
- W4319663642 cites W2890213701 @default.
- W4319663642 cites W2895745202 @default.
- W4319663642 cites W2898231767 @default.
- W4319663642 cites W2911873662 @default.
- W4319663642 cites W2930080648 @default.
- W4319663642 cites W2939652577 @default.
- W4319663642 cites W2964307318 @default.
- W4319663642 cites W2964314455 @default.
- W4319663642 cites W2982030033 @default.
- W4319663642 cites W3098410961 @default.
- W4319663642 cites W3102327032 @default.
- W4319663642 cites W3103406720 @default.
- W4319663642 cites W3103648783 @default.
- W4319663642 cites W3106458387 @default.
- W4319663642 cites W3168086592 @default.
- W4319663642 cites W3198725430 @default.
- W4319663642 cites W3209959857 @default.
- W4319663642 cites W4206707363 @default.
- W4319663642 doi "https://doi.org/10.1109/access.2023.3243633" @default.
- W4319663642 hasPublicationYear "2023" @default.
- W4319663642 type Work @default.
- W4319663642 citedByCount "0" @default.
- W4319663642 crossrefType "journal-article" @default.
- W4319663642 hasAuthorship W4319663642A5008762379 @default.
- W4319663642 hasAuthorship W4319663642A5013688414 @default.
- W4319663642 hasAuthorship W4319663642A5036662578 @default.
- W4319663642 hasAuthorship W4319663642A5078525240 @default.
- W4319663642 hasAuthorship W4319663642A5080148523 @default.
- W4319663642 hasBestOaLocation W43196636421 @default.
- W4319663642 hasConcept C11413529 @default.
- W4319663642 hasConcept C115961682 @default.
- W4319663642 hasConcept C150921843 @default.
- W4319663642 hasConcept C154945302 @default.
- W4319663642 hasConcept C157286648 @default.
- W4319663642 hasConcept C19966478 @default.
- W4319663642 hasConcept C31972630 @default.
- W4319663642 hasConcept C33954974 @default.
- W4319663642 hasConcept C41008148 @default.
- W4319663642 hasConcept C49441653 @default.
- W4319663642 hasConcept C52421305 @default.
- W4319663642 hasConcept C79061980 @default.
- W4319663642 hasConcept C86369673 @default.
- W4319663642 hasConcept C90509273 @default.
- W4319663642 hasConcept C99498987 @default.
- W4319663642 hasConceptScore W4319663642C11413529 @default.
- W4319663642 hasConceptScore W4319663642C115961682 @default.
- W4319663642 hasConceptScore W4319663642C150921843 @default.
- W4319663642 hasConceptScore W4319663642C154945302 @default.
- W4319663642 hasConceptScore W4319663642C157286648 @default.
- W4319663642 hasConceptScore W4319663642C19966478 @default.
- W4319663642 hasConceptScore W4319663642C31972630 @default.
- W4319663642 hasConceptScore W4319663642C33954974 @default.
- W4319663642 hasConceptScore W4319663642C41008148 @default.
- W4319663642 hasConceptScore W4319663642C49441653 @default.
- W4319663642 hasConceptScore W4319663642C52421305 @default.
- W4319663642 hasConceptScore W4319663642C79061980 @default.
- W4319663642 hasConceptScore W4319663642C86369673 @default.
- W4319663642 hasConceptScore W4319663642C90509273 @default.
- W4319663642 hasConceptScore W4319663642C99498987 @default.
- W4319663642 hasLocation W43196636421 @default.
- W4319663642 hasOpenAccess W4319663642 @default.
- W4319663642 hasPrimaryLocation W43196636421 @default.
- W4319663642 hasRelatedWork W2060890775 @default.
- W4319663642 hasRelatedWork W2114140148 @default.
- W4319663642 hasRelatedWork W2625455490 @default.
- W4319663642 hasRelatedWork W2972219788 @default.
- W4319663642 hasRelatedWork W2980357211 @default.
- W4319663642 hasRelatedWork W3003695190 @default.
- W4319663642 hasRelatedWork W3019330256 @default.
- W4319663642 hasRelatedWork W4285265093 @default.
- W4319663642 hasRelatedWork W4324290685 @default.
- W4319663642 hasRelatedWork W4383748483 @default.
- W4319663642 hasVolume "11" @default.
- W4319663642 isParatext "false" @default.
- W4319663642 isRetracted "false" @default.
- W4319663642 workType "article" @default.