Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319736474> ?p ?o ?g. }
- W4319736474 abstract "This study presents a workflow to predict the upscaled absolute permeability of the rock core direct from CT images whose resolution is not sufficient to allow direct pore-scale permeability computation. This workflow exploits the deep learning technique with the data of raw CT images of rocks and their corresponding permeability value obtained by performing flow simulation on high-resolution CT images. The permeability map of a much larger region in the rock core is predicted by the trained neural network. Finally, the upscaled permeability of the entire rock core is calculated by the Darcy flow solver, and the results showed a good agreement with the experiment data. This proposed deep learning based upscaling method allows estimating the permeability of large-scale core samples while preserving the effects of fine-scale pore structure variations due to the local heterogeneity." @default.
- W4319736474 created "2023-02-11" @default.
- W4319736474 creator A5004909845 @default.
- W4319736474 creator A5004976682 @default.
- W4319736474 creator A5015423072 @default.
- W4319736474 creator A5020981339 @default.
- W4319736474 creator A5040046673 @default.
- W4319736474 creator A5044861169 @default.
- W4319736474 creator A5060673316 @default.
- W4319736474 creator A5065322660 @default.
- W4319736474 creator A5072946816 @default.
- W4319736474 creator A5077271255 @default.
- W4319736474 date "2023-02-27" @default.
- W4319736474 modified "2023-10-12" @default.
- W4319736474 title "Upscaling Permeability Using Multiscale X‐Ray‐CT Images With Digital Rock Modeling and Deep Learning Techniques" @default.
- W4319736474 cites W1498436455 @default.
- W4319736474 cites W1533563182 @default.
- W4319736474 cites W1970527097 @default.
- W4319736474 cites W1983435733 @default.
- W4319736474 cites W1998296020 @default.
- W4319736474 cites W2001283925 @default.
- W4319736474 cites W2006197428 @default.
- W4319736474 cites W2018905043 @default.
- W4319736474 cites W2022121311 @default.
- W4319736474 cites W2026632831 @default.
- W4319736474 cites W2033386240 @default.
- W4319736474 cites W2038869317 @default.
- W4319736474 cites W2047601718 @default.
- W4319736474 cites W2054950515 @default.
- W4319736474 cites W2057274687 @default.
- W4319736474 cites W2070083946 @default.
- W4319736474 cites W2086157762 @default.
- W4319736474 cites W2089868559 @default.
- W4319736474 cites W2090458015 @default.
- W4319736474 cites W2097117768 @default.
- W4319736474 cites W2112796928 @default.
- W4319736474 cites W2123702814 @default.
- W4319736474 cites W2126642381 @default.
- W4319736474 cites W2134635972 @default.
- W4319736474 cites W2141787314 @default.
- W4319736474 cites W2159501187 @default.
- W4319736474 cites W2194775991 @default.
- W4319736474 cites W2196306872 @default.
- W4319736474 cites W2210539949 @default.
- W4319736474 cites W2325008094 @default.
- W4319736474 cites W2345572503 @default.
- W4319736474 cites W2549663444 @default.
- W4319736474 cites W2916032760 @default.
- W4319736474 cites W2937843000 @default.
- W4319736474 cites W2953297026 @default.
- W4319736474 cites W2973247225 @default.
- W4319736474 cites W2975558134 @default.
- W4319736474 cites W3000181890 @default.
- W4319736474 cites W3008080006 @default.
- W4319736474 cites W3008518994 @default.
- W4319736474 cites W3032752766 @default.
- W4319736474 cites W3090291662 @default.
- W4319736474 cites W3092236450 @default.
- W4319736474 cites W3096212479 @default.
- W4319736474 cites W3113796671 @default.
- W4319736474 cites W3124856606 @default.
- W4319736474 cites W3127003409 @default.
- W4319736474 cites W3131674184 @default.
- W4319736474 cites W3137388315 @default.
- W4319736474 cites W3157441078 @default.
- W4319736474 cites W3158468039 @default.
- W4319736474 cites W3172069553 @default.
- W4319736474 cites W3196016355 @default.
- W4319736474 cites W324280150 @default.
- W4319736474 cites W4206073904 @default.
- W4319736474 cites W4220895364 @default.
- W4319736474 cites W4221053048 @default.
- W4319736474 cites W4224012462 @default.
- W4319736474 cites W4225373749 @default.
- W4319736474 cites W4249736682 @default.
- W4319736474 cites W4301455501 @default.
- W4319736474 doi "https://doi.org/10.1029/2022wr033267" @default.
- W4319736474 hasPublicationYear "2023" @default.
- W4319736474 type Work @default.
- W4319736474 citedByCount "1" @default.
- W4319736474 crossrefType "journal-article" @default.
- W4319736474 hasAuthorship W4319736474A5004909845 @default.
- W4319736474 hasAuthorship W4319736474A5004976682 @default.
- W4319736474 hasAuthorship W4319736474A5015423072 @default.
- W4319736474 hasAuthorship W4319736474A5020981339 @default.
- W4319736474 hasAuthorship W4319736474A5040046673 @default.
- W4319736474 hasAuthorship W4319736474A5044861169 @default.
- W4319736474 hasAuthorship W4319736474A5060673316 @default.
- W4319736474 hasAuthorship W4319736474A5065322660 @default.
- W4319736474 hasAuthorship W4319736474A5072946816 @default.
- W4319736474 hasAuthorship W4319736474A5077271255 @default.
- W4319736474 hasBestOaLocation W43197364741 @default.
- W4319736474 hasConcept C113378726 @default.
- W4319736474 hasConcept C11413529 @default.
- W4319736474 hasConcept C120882062 @default.
- W4319736474 hasConcept C127313418 @default.
- W4319736474 hasConcept C154945302 @default.
- W4319736474 hasConcept C177212765 @default.
- W4319736474 hasConcept C187320778 @default.
- W4319736474 hasConcept C199360897 @default.