Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319765238> ?p ?o ?g. }
- W4319765238 endingPage "1914" @default.
- W4319765238 startingPage "1914" @default.
- W4319765238 abstract "The neuroscience community has developed many convolutional neural networks (CNNs) for the early detection of Alzheimer’s disease (AD). Population graphs are thought of as non-linear structures that capture the relationships between individual subjects represented as nodes, which allows for the simultaneous integration of imaging and non-imaging information as well as individual subjects’ features. Graph convolutional networks (GCNs) generalize convolution operations to accommodate non-Euclidean data and aid in the mining of topological information from the population graph for a disease classification task. However, few studies have examined how GCNs’ input properties affect AD-staging performance. Therefore, we conducted three experiments in this work. Experiment 1 examined how the inclusion of demographic information in the edge-assigning function affects the classification of AD versus cognitive normal (CN). Experiment 2 was designed to examine the effects of adding various neuropsychological tests to the edge-assigning function on the mild cognitive impairment (MCI) classification. Experiment 3 studied the impact of the edge assignment function. The best result was obtained in Experiment 2 on multi-class classification (AD, MCI, and CN). We applied a novel framework for the diagnosis of AD that integrated CNNs and GCNs into a unified network, taking advantage of the excellent feature extraction capabilities of CNNs and population-graph processing capabilities of GCNs. To learn high-level anatomical features, DenseNet was used; a set of population graphs was represented with nodes defined by imaging features and edge weights determined by different combinations of imaging or/and non-imaging information, and the generated graphs were then fed to the GCNs for classification. Both binary classification and multi-class classification showed improved performance, with an accuracy of 91.6% for AD versus CN, 91.2% for AD versus MCI, 96.8% for MCI versus CN, and 89.4% for multi-class classification. The population graph’s imaging features and edge-assigning functions can both significantly affect classification accuracy." @default.
- W4319765238 created "2023-02-11" @default.
- W4319765238 creator A5005303316 @default.
- W4319765238 creator A5008741276 @default.
- W4319765238 creator A5047402946 @default.
- W4319765238 creator A5063947852 @default.
- W4319765238 creator A5081758373 @default.
- W4319765238 creator A5085226731 @default.
- W4319765238 date "2023-02-08" @default.
- W4319765238 modified "2023-09-25" @default.
- W4319765238 title "A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification" @default.
- W4319765238 cites W1556134376 @default.
- W4319765238 cites W1966014994 @default.
- W4319765238 cites W1968811469 @default.
- W4319765238 cites W1984737558 @default.
- W4319765238 cites W2033252867 @default.
- W4319765238 cites W2043446004 @default.
- W4319765238 cites W2069743064 @default.
- W4319765238 cites W2122328291 @default.
- W4319765238 cites W2130240223 @default.
- W4319765238 cites W2327790265 @default.
- W4319765238 cites W2437840001 @default.
- W4319765238 cites W2782858730 @default.
- W4319765238 cites W2808227793 @default.
- W4319765238 cites W2924434884 @default.
- W4319765238 cites W2947363735 @default.
- W4319765238 cites W2957048678 @default.
- W4319765238 cites W2963446712 @default.
- W4319765238 cites W2963794481 @default.
- W4319765238 cites W2964266449 @default.
- W4319765238 cites W2965878453 @default.
- W4319765238 cites W2986229668 @default.
- W4319765238 cites W2995495466 @default.
- W4319765238 cites W3009710006 @default.
- W4319765238 cites W3095479837 @default.
- W4319765238 cites W3111670921 @default.
- W4319765238 cites W3112246556 @default.
- W4319765238 cites W3126859659 @default.
- W4319765238 cites W3131436111 @default.
- W4319765238 cites W3134937671 @default.
- W4319765238 cites W3149479187 @default.
- W4319765238 cites W3184758801 @default.
- W4319765238 cites W3212514517 @default.
- W4319765238 cites W4200330357 @default.
- W4319765238 cites W4210821588 @default.
- W4319765238 cites W4211079490 @default.
- W4319765238 cites W4211200294 @default.
- W4319765238 cites W4214485946 @default.
- W4319765238 cites W4225156123 @default.
- W4319765238 cites W4280512342 @default.
- W4319765238 cites W4285590361 @default.
- W4319765238 cites W4292267086 @default.
- W4319765238 doi "https://doi.org/10.3390/s23041914" @default.
- W4319765238 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36850510" @default.
- W4319765238 hasPublicationYear "2023" @default.
- W4319765238 type Work @default.
- W4319765238 citedByCount "0" @default.
- W4319765238 crossrefType "journal-article" @default.
- W4319765238 hasAuthorship W4319765238A5005303316 @default.
- W4319765238 hasAuthorship W4319765238A5008741276 @default.
- W4319765238 hasAuthorship W4319765238A5047402946 @default.
- W4319765238 hasAuthorship W4319765238A5063947852 @default.
- W4319765238 hasAuthorship W4319765238A5081758373 @default.
- W4319765238 hasAuthorship W4319765238A5085226731 @default.
- W4319765238 hasBestOaLocation W43197652381 @default.
- W4319765238 hasConcept C119857082 @default.
- W4319765238 hasConcept C132525143 @default.
- W4319765238 hasConcept C153180895 @default.
- W4319765238 hasConcept C154945302 @default.
- W4319765238 hasConcept C2908647359 @default.
- W4319765238 hasConcept C41008148 @default.
- W4319765238 hasConcept C71924100 @default.
- W4319765238 hasConcept C80444323 @default.
- W4319765238 hasConcept C81363708 @default.
- W4319765238 hasConcept C99454951 @default.
- W4319765238 hasConceptScore W4319765238C119857082 @default.
- W4319765238 hasConceptScore W4319765238C132525143 @default.
- W4319765238 hasConceptScore W4319765238C153180895 @default.
- W4319765238 hasConceptScore W4319765238C154945302 @default.
- W4319765238 hasConceptScore W4319765238C2908647359 @default.
- W4319765238 hasConceptScore W4319765238C41008148 @default.
- W4319765238 hasConceptScore W4319765238C71924100 @default.
- W4319765238 hasConceptScore W4319765238C80444323 @default.
- W4319765238 hasConceptScore W4319765238C81363708 @default.
- W4319765238 hasConceptScore W4319765238C99454951 @default.
- W4319765238 hasFunder F4320321001 @default.
- W4319765238 hasFunder F4320322919 @default.
- W4319765238 hasIssue "4" @default.
- W4319765238 hasLocation W43197652381 @default.
- W4319765238 hasLocation W43197652382 @default.
- W4319765238 hasLocation W43197652383 @default.
- W4319765238 hasOpenAccess W4319765238 @default.
- W4319765238 hasPrimaryLocation W43197652381 @default.
- W4319765238 hasRelatedWork W2521062615 @default.
- W4319765238 hasRelatedWork W2767651786 @default.
- W4319765238 hasRelatedWork W2912288872 @default.
- W4319765238 hasRelatedWork W2961085424 @default.
- W4319765238 hasRelatedWork W3021430260 @default.