Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319778397> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4319778397 abstract "For the past several years, urbanization and industrialization have been on increase in developed nations, resulting in a huge rise in contaminated air. Citizens and governments have become increasingly worried about the detrimental effects of Air Pollution (AP). Predicting Air Quality (AQ) is a critical step that the government should take because it becoming a major public health concern. The AQ index is a metric for measuring AQ. When fossil fuels such as natural gas, coal, and wood are burned, as well as factories and motor cars, carbon dioxide, nitrogen dioxide, carbon monoxide, and other noxious gases are emitted which leads to AP. This can cause health issues such as cancer, brain impairment, and even death. The forecast of AP allows the government to take preventive actions such as restricting driving hours, partially closing factories, and issuing public service messages. So, the prediction of AP is essential and there is a lot of research being done in this field. This research article reviewed the recent works on AP prediction and present the research using five important sections. In the first section of this review, we will discuss the available methods that can be used to acquire AP data. Second, the processes that can be carried out to pre-process the raw data. Third, the prediction of pollution made use of developing technologies such as Machine Learning (ML) and Deep Learning (DL), and lastly, the evaluation of the model was discussed. The research gap and future steps on the prediction of AP also elaborated. This review will help researchers for a better understanding of the automatic prediction of AP." @default.
- W4319778397 created "2023-02-11" @default.
- W4319778397 creator A5010185819 @default.
- W4319778397 creator A5050236258 @default.
- W4319778397 creator A5056252233 @default.
- W4319778397 date "2022-11-04" @default.
- W4319778397 modified "2023-10-18" @default.
- W4319778397 title "Detection and Prediction of Air Pollution using Machine Learning and Deep Learning Techniques" @default.
- W4319778397 cites W1537793047 @default.
- W4319778397 cites W1740778703 @default.
- W4319778397 cites W1997344654 @default.
- W4319778397 cites W2000400949 @default.
- W4319778397 cites W2018680235 @default.
- W4319778397 cites W2084103053 @default.
- W4319778397 cites W2130231837 @default.
- W4319778397 cites W2135332868 @default.
- W4319778397 cites W2151536734 @default.
- W4319778397 cites W2316167246 @default.
- W4319778397 cites W2744556021 @default.
- W4319778397 cites W2765449478 @default.
- W4319778397 cites W2782856232 @default.
- W4319778397 cites W2889990933 @default.
- W4319778397 cites W2925920795 @default.
- W4319778397 cites W2940589644 @default.
- W4319778397 cites W2955613755 @default.
- W4319778397 cites W2990955039 @default.
- W4319778397 cites W3012391712 @default.
- W4319778397 cites W3033154016 @default.
- W4319778397 cites W3046975334 @default.
- W4319778397 cites W3167976752 @default.
- W4319778397 cites W3182706339 @default.
- W4319778397 cites W3197950246 @default.
- W4319778397 cites W3202554610 @default.
- W4319778397 cites W4280493402 @default.
- W4319778397 cites W4280583385 @default.
- W4319778397 cites W597998874 @default.
- W4319778397 doi "https://doi.org/10.1109/icccis56430.2022.10037732" @default.
- W4319778397 hasPublicationYear "2022" @default.
- W4319778397 type Work @default.
- W4319778397 citedByCount "0" @default.
- W4319778397 crossrefType "proceedings-article" @default.
- W4319778397 hasAuthorship W4319778397A5010185819 @default.
- W4319778397 hasAuthorship W4319778397A5050236258 @default.
- W4319778397 hasAuthorship W4319778397A5056252233 @default.
- W4319778397 hasConcept C108583219 @default.
- W4319778397 hasConcept C119857082 @default.
- W4319778397 hasConcept C134560507 @default.
- W4319778397 hasConcept C138885662 @default.
- W4319778397 hasConcept C144133560 @default.
- W4319778397 hasConcept C154945302 @default.
- W4319778397 hasConcept C162324750 @default.
- W4319778397 hasConcept C178790620 @default.
- W4319778397 hasConcept C185592680 @default.
- W4319778397 hasConcept C2778137410 @default.
- W4319778397 hasConcept C41008148 @default.
- W4319778397 hasConcept C41895202 @default.
- W4319778397 hasConcept C559116025 @default.
- W4319778397 hasConceptScore W4319778397C108583219 @default.
- W4319778397 hasConceptScore W4319778397C119857082 @default.
- W4319778397 hasConceptScore W4319778397C134560507 @default.
- W4319778397 hasConceptScore W4319778397C138885662 @default.
- W4319778397 hasConceptScore W4319778397C144133560 @default.
- W4319778397 hasConceptScore W4319778397C154945302 @default.
- W4319778397 hasConceptScore W4319778397C162324750 @default.
- W4319778397 hasConceptScore W4319778397C178790620 @default.
- W4319778397 hasConceptScore W4319778397C185592680 @default.
- W4319778397 hasConceptScore W4319778397C2778137410 @default.
- W4319778397 hasConceptScore W4319778397C41008148 @default.
- W4319778397 hasConceptScore W4319778397C41895202 @default.
- W4319778397 hasConceptScore W4319778397C559116025 @default.
- W4319778397 hasLocation W43197783971 @default.
- W4319778397 hasOpenAccess W4319778397 @default.
- W4319778397 hasPrimaryLocation W43197783971 @default.
- W4319778397 hasRelatedWork W2922457425 @default.
- W4319778397 hasRelatedWork W3014300295 @default.
- W4319778397 hasRelatedWork W3164822677 @default.
- W4319778397 hasRelatedWork W3215138031 @default.
- W4319778397 hasRelatedWork W4223943233 @default.
- W4319778397 hasRelatedWork W4225161397 @default.
- W4319778397 hasRelatedWork W4250304930 @default.
- W4319778397 hasRelatedWork W4309045103 @default.
- W4319778397 hasRelatedWork W4312200629 @default.
- W4319778397 hasRelatedWork W4360585206 @default.
- W4319778397 isParatext "false" @default.
- W4319778397 isRetracted "false" @default.
- W4319778397 workType "article" @default.