Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319782046> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4319782046 endingPage "287" @default.
- W4319782046 startingPage "263" @default.
- W4319782046 abstract "Electricity demand forecasting has become one of the main research topics in the energy management system. For this reason, many different methodologies for load forecasting have been proposed. Artificial Intelligence forecasting methodologies are divided into classical machine learning and deep machine learning. The most used classic machine learning methodology is multilayer perceptron, whereas long short-term memory (LSTM) and gated recurrent unit (GRU) are the most used deep machine learning methodologies. All the methodologies mentioned require a proper choice of hyper-parameters to improve forecasting. This chapter reviews the three methodologies and the hyper-parameters that influence them. For this purpose, a real dataset, taken from an Irish project with 260 residential consumers sampled every hour, is used. Finally, the methodologies are compared to each other with the best choice of hyperparameters. The three methodologies presented similar results, because the loss function (mean squared error) is optimized with Adam. Adam has adaptive learning rate and is the hyperparameter most difficult to define by classical methodologies. This hyperparameter always had an influence on the improvement of the forecasting." @default.
- W4319782046 created "2023-02-11" @default.
- W4319782046 creator A5017224965 @default.
- W4319782046 creator A5022294626 @default.
- W4319782046 creator A5054565315 @default.
- W4319782046 date "2023-01-01" @default.
- W4319782046 modified "2023-09-27" @default.
- W4319782046 title "AI application for load forecasting: a comparison of classical and deep learning methodologies" @default.
- W4319782046 cites W1968806673 @default.
- W4319782046 cites W1977098485 @default.
- W4319782046 cites W2034135159 @default.
- W4319782046 cites W2046185460 @default.
- W4319782046 cites W2075795701 @default.
- W4319782046 cites W2092514020 @default.
- W4319782046 cites W2100090926 @default.
- W4319782046 cites W2129504253 @default.
- W4319782046 cites W2275088575 @default.
- W4319782046 cites W2326513046 @default.
- W4319782046 cites W2597866042 @default.
- W4319782046 cites W2744106784 @default.
- W4319782046 cites W2747580724 @default.
- W4319782046 cites W2754252319 @default.
- W4319782046 cites W2794794675 @default.
- W4319782046 cites W2947705626 @default.
- W4319782046 cites W3130388336 @default.
- W4319782046 cites W3188450664 @default.
- W4319782046 doi "https://doi.org/10.1016/b978-0-32-399904-5.00017-x" @default.
- W4319782046 hasPublicationYear "2023" @default.
- W4319782046 type Work @default.
- W4319782046 citedByCount "0" @default.
- W4319782046 crossrefType "book-chapter" @default.
- W4319782046 hasAuthorship W4319782046A5017224965 @default.
- W4319782046 hasAuthorship W4319782046A5022294626 @default.
- W4319782046 hasAuthorship W4319782046A5054565315 @default.
- W4319782046 hasConcept C108583219 @default.
- W4319782046 hasConcept C119857082 @default.
- W4319782046 hasConcept C154945302 @default.
- W4319782046 hasConcept C179717631 @default.
- W4319782046 hasConcept C41008148 @default.
- W4319782046 hasConcept C50644808 @default.
- W4319782046 hasConcept C60908668 @default.
- W4319782046 hasConcept C8642999 @default.
- W4319782046 hasConceptScore W4319782046C108583219 @default.
- W4319782046 hasConceptScore W4319782046C119857082 @default.
- W4319782046 hasConceptScore W4319782046C154945302 @default.
- W4319782046 hasConceptScore W4319782046C179717631 @default.
- W4319782046 hasConceptScore W4319782046C41008148 @default.
- W4319782046 hasConceptScore W4319782046C50644808 @default.
- W4319782046 hasConceptScore W4319782046C60908668 @default.
- W4319782046 hasConceptScore W4319782046C8642999 @default.
- W4319782046 hasLocation W43197820461 @default.
- W4319782046 hasOpenAccess W4319782046 @default.
- W4319782046 hasPrimaryLocation W43197820461 @default.
- W4319782046 hasRelatedWork W1525510058 @default.
- W4319782046 hasRelatedWork W2941320171 @default.
- W4319782046 hasRelatedWork W2991591812 @default.
- W4319782046 hasRelatedWork W3211546796 @default.
- W4319782046 hasRelatedWork W4231994957 @default.
- W4319782046 hasRelatedWork W4280535922 @default.
- W4319782046 hasRelatedWork W4294067781 @default.
- W4319782046 hasRelatedWork W4304128395 @default.
- W4319782046 hasRelatedWork W4320802194 @default.
- W4319782046 hasRelatedWork W4366674482 @default.
- W4319782046 isParatext "false" @default.
- W4319782046 isRetracted "false" @default.
- W4319782046 workType "book-chapter" @default.