Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319783009> ?p ?o ?g. }
- W4319783009 endingPage "344" @default.
- W4319783009 startingPage "315" @default.
- W4319783009 abstract "Currently there is a buzz about artificial intelligence (AI) and machine learning (ML) in every sector. The current chapter is focused on role of AI and ML in healthcare system especially diagnosis and radiotherapy. Different machine learning algorithm models such as supervised, unsupervised, semi-supervised, and reinforcement learning were also mentioned in this chapter. Herein authors also discusses role of AI in radiology and different types of radiation therapy with its mechanism of action. This chapter explores the ongoing research and implementation of AI and ML in diagnosis and radiotherapy. Successful application of AI and ML algorithms in radiotherapy has been discussed in detail. However, many challenges are there in clinical application of AI in diagnosis and radiotherapy at this time such as quality assurance, reproducibility, implementation, and interpretability." @default.
- W4319783009 created "2023-02-11" @default.
- W4319783009 creator A5058759431 @default.
- W4319783009 creator A5080459626 @default.
- W4319783009 creator A5085446980 @default.
- W4319783009 creator A5089253349 @default.
- W4319783009 date "2023-02-07" @default.
- W4319783009 modified "2023-10-12" @default.
- W4319783009 title "Role of Artificial Intelligence in Machine Learning for Diagnosis and Radiotherapy" @default.
- W4319783009 cites W2020044049 @default.
- W4319783009 cites W2099305408 @default.
- W4319783009 cites W2119479641 @default.
- W4319783009 cites W2585766662 @default.
- W4319783009 cites W2749375587 @default.
- W4319783009 cites W2789532252 @default.
- W4319783009 cites W2803760365 @default.
- W4319783009 cites W2885096695 @default.
- W4319783009 cites W2896909802 @default.
- W4319783009 cites W2901308062 @default.
- W4319783009 cites W2905395632 @default.
- W4319783009 cites W2908170302 @default.
- W4319783009 cites W2923437336 @default.
- W4319783009 cites W2947263797 @default.
- W4319783009 cites W2966194224 @default.
- W4319783009 cites W2966555834 @default.
- W4319783009 cites W2969705353 @default.
- W4319783009 cites W2996287395 @default.
- W4319783009 cites W3013056581 @default.
- W4319783009 cites W3021673644 @default.
- W4319783009 cites W3025885500 @default.
- W4319783009 cites W3036910279 @default.
- W4319783009 cites W3040019270 @default.
- W4319783009 cites W3085467444 @default.
- W4319783009 cites W3093234744 @default.
- W4319783009 cites W3103726637 @default.
- W4319783009 cites W3110719949 @default.
- W4319783009 cites W3122391591 @default.
- W4319783009 cites W3123982987 @default.
- W4319783009 cites W3129756165 @default.
- W4319783009 cites W3130161106 @default.
- W4319783009 cites W3132944495 @default.
- W4319783009 cites W3133679809 @default.
- W4319783009 cites W3134415212 @default.
- W4319783009 cites W3163490502 @default.
- W4319783009 cites W3165782466 @default.
- W4319783009 cites W3170978381 @default.
- W4319783009 cites W3175625704 @default.
- W4319783009 cites W3195317582 @default.
- W4319783009 cites W3197594600 @default.
- W4319783009 cites W3200445016 @default.
- W4319783009 cites W3205089560 @default.
- W4319783009 cites W3217642039 @default.
- W4319783009 cites W4210503904 @default.
- W4319783009 cites W4213422477 @default.
- W4319783009 cites W4220797967 @default.
- W4319783009 cites W4221026705 @default.
- W4319783009 doi "https://doi.org/10.1002/9781119865728.ch14" @default.
- W4319783009 hasPublicationYear "2023" @default.
- W4319783009 type Work @default.
- W4319783009 citedByCount "0" @default.
- W4319783009 crossrefType "other" @default.
- W4319783009 hasAuthorship W4319783009A5058759431 @default.
- W4319783009 hasAuthorship W4319783009A5080459626 @default.
- W4319783009 hasAuthorship W4319783009A5085446980 @default.
- W4319783009 hasAuthorship W4319783009A5089253349 @default.
- W4319783009 hasConcept C106436119 @default.
- W4319783009 hasConcept C119857082 @default.
- W4319783009 hasConcept C126838900 @default.
- W4319783009 hasConcept C142724271 @default.
- W4319783009 hasConcept C154945302 @default.
- W4319783009 hasConcept C2778618615 @default.
- W4319783009 hasConcept C2781067378 @default.
- W4319783009 hasConcept C41008148 @default.
- W4319783009 hasConcept C509974204 @default.
- W4319783009 hasConcept C71924100 @default.
- W4319783009 hasConcept C97541855 @default.
- W4319783009 hasConceptScore W4319783009C106436119 @default.
- W4319783009 hasConceptScore W4319783009C119857082 @default.
- W4319783009 hasConceptScore W4319783009C126838900 @default.
- W4319783009 hasConceptScore W4319783009C142724271 @default.
- W4319783009 hasConceptScore W4319783009C154945302 @default.
- W4319783009 hasConceptScore W4319783009C2778618615 @default.
- W4319783009 hasConceptScore W4319783009C2781067378 @default.
- W4319783009 hasConceptScore W4319783009C41008148 @default.
- W4319783009 hasConceptScore W4319783009C509974204 @default.
- W4319783009 hasConceptScore W4319783009C71924100 @default.
- W4319783009 hasConceptScore W4319783009C97541855 @default.
- W4319783009 hasLocation W43197830091 @default.
- W4319783009 hasOpenAccess W4319783009 @default.
- W4319783009 hasPrimaryLocation W43197830091 @default.
- W4319783009 hasRelatedWork W1986582023 @default.
- W4319783009 hasRelatedWork W2806259446 @default.
- W4319783009 hasRelatedWork W2883749686 @default.
- W4319783009 hasRelatedWork W2905433371 @default.
- W4319783009 hasRelatedWork W4310278675 @default.
- W4319783009 hasRelatedWork W4311431240 @default.
- W4319783009 hasRelatedWork W4312407344 @default.
- W4319783009 hasRelatedWork W4315864862 @default.