Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319786554> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4319786554 endingPage "670" @default.
- W4319786554 startingPage "670" @default.
- W4319786554 abstract "With the rapid development of IoT, big data and artificial intelligence, the research and application of data-driven hydrological models are increasing. However, when conducting time series analysis, many prediction models are often directly based on the following assumptions: hydrologic time series are normal, homogeneous, smooth and non-trending, which are not always all true. To address the related issues, a solution for short-term hydrological forecasting is proposed. Firstly, a feature test is conducted to verify whether the hydrological time series are normal, homogeneous, smooth and non-trending; secondly, a sequence-to-sequence (seq2seq)-based short-term water level prediction model (LSTM-seq2seq) is proposed to improve the accuracy of hydrological prediction. The model uses a long short-term memory neural network (LSTM) as an encoding layer to encode the historical flow sequence into a context vector, and another LSTM as a decoding layer to decode the context vector in order to predict the target runoff, by superimposing on the attention mechanism, aiming at improving the prediction accuracy. Using the experimental data regarding the water level of the Chu River, the model is compared to other models based on the analysis of normality, smoothness, homogeneity and trending of different water level data. The results show that the prediction accuracy of the proposed model is greater than that of the data set without these characteristics for the data set with normality, smoothness, homogeneity and trend. Flow data at Runcheng, Wuzhi, Baima Temple, Longmen Town, Dongwan, Lu’s and Tongguan are used as input data sets to train and evaluate the model. Metrics RMSE and NSE are used to evaluate the prediction accuracy and convergence speed of the model. The results show that the prediction accuracy of LSTM-seq2seq and LSTM-BP models is higher than other models. Furthermore, the convergence process of the LSTM-seq2seq model is the fastest among the compared models." @default.
- W4319786554 created "2023-02-11" @default.
- W4319786554 creator A5000162290 @default.
- W4319786554 creator A5050311492 @default.
- W4319786554 creator A5074176731 @default.
- W4319786554 creator A5080733133 @default.
- W4319786554 creator A5084920912 @default.
- W4319786554 date "2023-02-08" @default.
- W4319786554 modified "2023-09-29" @default.
- W4319786554 title "A Hydrological Data Prediction Model Based on LSTM with Attention Mechanism" @default.
- W4319786554 cites W1492429614 @default.
- W4319786554 cites W2033904036 @default.
- W4319786554 cites W2069143585 @default.
- W4319786554 cites W2088123298 @default.
- W4319786554 cites W2144499799 @default.
- W4319786554 cites W2190323913 @default.
- W4319786554 cites W2617348821 @default.
- W4319786554 cites W2769851728 @default.
- W4319786554 cites W2800819102 @default.
- W4319786554 cites W2802436364 @default.
- W4319786554 cites W2804523998 @default.
- W4319786554 cites W2898791292 @default.
- W4319786554 cites W2900459298 @default.
- W4319786554 cites W3008325040 @default.
- W4319786554 cites W3125807057 @default.
- W4319786554 cites W3161929512 @default.
- W4319786554 doi "https://doi.org/10.3390/w15040670" @default.
- W4319786554 hasPublicationYear "2023" @default.
- W4319786554 type Work @default.
- W4319786554 citedByCount "2" @default.
- W4319786554 countsByYear W43197865542023 @default.
- W4319786554 crossrefType "journal-article" @default.
- W4319786554 hasAuthorship W4319786554A5000162290 @default.
- W4319786554 hasAuthorship W4319786554A5050311492 @default.
- W4319786554 hasAuthorship W4319786554A5074176731 @default.
- W4319786554 hasAuthorship W4319786554A5080733133 @default.
- W4319786554 hasAuthorship W4319786554A5084920912 @default.
- W4319786554 hasBestOaLocation W43197865541 @default.
- W4319786554 hasConcept C105795698 @default.
- W4319786554 hasConcept C11413529 @default.
- W4319786554 hasConcept C119857082 @default.
- W4319786554 hasConcept C124101348 @default.
- W4319786554 hasConcept C127313418 @default.
- W4319786554 hasConcept C142259097 @default.
- W4319786554 hasConcept C151406439 @default.
- W4319786554 hasConcept C151730666 @default.
- W4319786554 hasConcept C154945302 @default.
- W4319786554 hasConcept C2776157432 @default.
- W4319786554 hasConcept C2779343474 @default.
- W4319786554 hasConcept C33923547 @default.
- W4319786554 hasConcept C41008148 @default.
- W4319786554 hasConcept C50644808 @default.
- W4319786554 hasConcept C57273362 @default.
- W4319786554 hasConcept C58489278 @default.
- W4319786554 hasConceptScore W4319786554C105795698 @default.
- W4319786554 hasConceptScore W4319786554C11413529 @default.
- W4319786554 hasConceptScore W4319786554C119857082 @default.
- W4319786554 hasConceptScore W4319786554C124101348 @default.
- W4319786554 hasConceptScore W4319786554C127313418 @default.
- W4319786554 hasConceptScore W4319786554C142259097 @default.
- W4319786554 hasConceptScore W4319786554C151406439 @default.
- W4319786554 hasConceptScore W4319786554C151730666 @default.
- W4319786554 hasConceptScore W4319786554C154945302 @default.
- W4319786554 hasConceptScore W4319786554C2776157432 @default.
- W4319786554 hasConceptScore W4319786554C2779343474 @default.
- W4319786554 hasConceptScore W4319786554C33923547 @default.
- W4319786554 hasConceptScore W4319786554C41008148 @default.
- W4319786554 hasConceptScore W4319786554C50644808 @default.
- W4319786554 hasConceptScore W4319786554C57273362 @default.
- W4319786554 hasConceptScore W4319786554C58489278 @default.
- W4319786554 hasIssue "4" @default.
- W4319786554 hasLocation W43197865541 @default.
- W4319786554 hasLocation W43197865542 @default.
- W4319786554 hasOpenAccess W4319786554 @default.
- W4319786554 hasPrimaryLocation W43197865541 @default.
- W4319786554 hasRelatedWork W1492482484 @default.
- W4319786554 hasRelatedWork W1995239016 @default.
- W4319786554 hasRelatedWork W2005484491 @default.
- W4319786554 hasRelatedWork W2008695827 @default.
- W4319786554 hasRelatedWork W2079629052 @default.
- W4319786554 hasRelatedWork W2350386639 @default.
- W4319786554 hasRelatedWork W2372050682 @default.
- W4319786554 hasRelatedWork W96694040 @default.
- W4319786554 hasRelatedWork W2184558321 @default.
- W4319786554 hasRelatedWork W2186453625 @default.
- W4319786554 hasVolume "15" @default.
- W4319786554 isParatext "false" @default.
- W4319786554 isRetracted "false" @default.
- W4319786554 workType "article" @default.