Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319789211> ?p ?o ?g. }
- W4319789211 endingPage "366" @default.
- W4319789211 startingPage "366" @default.
- W4319789211 abstract "This article presents two new chemical plume tracing (CPT) algorithms for using on autonomous underwater vehicles (AUVs) to locate hydrothermal vents. We aim to design effective CPT navigation algorithms that direct AUVs to trace emitted hydrothermal plumes to the hydrothermal vent. Traditional CPT algorithms can be grouped into two categories, including bio-inspired and engineering-based methods, but they are limited by either search inefficiency in turbulent flow environments or high computational costs. To approach this problem, we design a new CPT algorithm by fusing traditional CPT methods. Specifically, two deep reinforcement learning (RL) algorithms, including double deep Q-network (DDQN) and deep deterministic policy gradient (DDPG), are employed to train a customized deep neural network that dynamically combines two traditional CPT algorithms during the search process. Simulation experiments show that both DDQN- and DDPG-based CPT algorithms achieve a high success rate (>90%) in either laminar or turbulent flow environments. Moreover, compared to traditional moth-inspired method, the averaged search time is improved by 67% for the DDQN- and 44% for the DDPG-based CPT algorithms in turbulent flow environments." @default.
- W4319789211 created "2023-02-11" @default.
- W4319789211 creator A5011071527 @default.
- W4319789211 creator A5062880210 @default.
- W4319789211 date "2023-02-06" @default.
- W4319789211 modified "2023-10-05" @default.
- W4319789211 title "Autonomous Underwater Vehicle Based Chemical Plume Tracing via Deep Reinforcement Learning Methods" @default.
- W4319789211 cites W1498138919 @default.
- W4319789211 cites W1544853044 @default.
- W4319789211 cites W1563941487 @default.
- W4319789211 cites W1635136645 @default.
- W4319789211 cites W1966804021 @default.
- W4319789211 cites W1987580180 @default.
- W4319789211 cites W1989635395 @default.
- W4319789211 cites W1993130196 @default.
- W4319789211 cites W1995331599 @default.
- W4319789211 cites W2015415689 @default.
- W4319789211 cites W2016863073 @default.
- W4319789211 cites W2021245852 @default.
- W4319789211 cites W2046695302 @default.
- W4319789211 cites W2057147920 @default.
- W4319789211 cites W2065288968 @default.
- W4319789211 cites W2073573937 @default.
- W4319789211 cites W2074955933 @default.
- W4319789211 cites W2092011920 @default.
- W4319789211 cites W2093352222 @default.
- W4319789211 cites W2093912891 @default.
- W4319789211 cites W2107710538 @default.
- W4319789211 cites W2116336144 @default.
- W4319789211 cites W2158987312 @default.
- W4319789211 cites W2160891248 @default.
- W4319789211 cites W2163130723 @default.
- W4319789211 cites W2163975006 @default.
- W4319789211 cites W2169565475 @default.
- W4319789211 cites W2257979135 @default.
- W4319789211 cites W2343497731 @default.
- W4319789211 cites W2497090499 @default.
- W4319789211 cites W2736968791 @default.
- W4319789211 cites W2746553466 @default.
- W4319789211 cites W2766447205 @default.
- W4319789211 cites W2903061390 @default.
- W4319789211 cites W2906829782 @default.
- W4319789211 cites W2921074836 @default.
- W4319789211 cites W2930863966 @default.
- W4319789211 cites W2944238819 @default.
- W4319789211 cites W2962887844 @default.
- W4319789211 cites W3002544328 @default.
- W4319789211 cites W3025574266 @default.
- W4319789211 cites W3027084331 @default.
- W4319789211 cites W3044494648 @default.
- W4319789211 cites W3175526009 @default.
- W4319789211 cites W3202347463 @default.
- W4319789211 cites W3207519973 @default.
- W4319789211 cites W4210627983 @default.
- W4319789211 doi "https://doi.org/10.3390/jmse11020366" @default.
- W4319789211 hasPublicationYear "2023" @default.
- W4319789211 type Work @default.
- W4319789211 citedByCount "0" @default.
- W4319789211 crossrefType "journal-article" @default.
- W4319789211 hasAuthorship W4319789211A5011071527 @default.
- W4319789211 hasAuthorship W4319789211A5062880210 @default.
- W4319789211 hasBestOaLocation W43197892111 @default.
- W4319789211 hasConcept C108583219 @default.
- W4319789211 hasConcept C111368507 @default.
- W4319789211 hasConcept C111919701 @default.
- W4319789211 hasConcept C11413529 @default.
- W4319789211 hasConcept C121332964 @default.
- W4319789211 hasConcept C127313418 @default.
- W4319789211 hasConcept C127413603 @default.
- W4319789211 hasConcept C138673069 @default.
- W4319789211 hasConcept C146978453 @default.
- W4319789211 hasConcept C153294291 @default.
- W4319789211 hasConcept C154945302 @default.
- W4319789211 hasConcept C196558001 @default.
- W4319789211 hasConcept C2775840915 @default.
- W4319789211 hasConcept C41008148 @default.
- W4319789211 hasConcept C50644808 @default.
- W4319789211 hasConcept C76563973 @default.
- W4319789211 hasConcept C97541855 @default.
- W4319789211 hasConcept C98083399 @default.
- W4319789211 hasConceptScore W4319789211C108583219 @default.
- W4319789211 hasConceptScore W4319789211C111368507 @default.
- W4319789211 hasConceptScore W4319789211C111919701 @default.
- W4319789211 hasConceptScore W4319789211C11413529 @default.
- W4319789211 hasConceptScore W4319789211C121332964 @default.
- W4319789211 hasConceptScore W4319789211C127313418 @default.
- W4319789211 hasConceptScore W4319789211C127413603 @default.
- W4319789211 hasConceptScore W4319789211C138673069 @default.
- W4319789211 hasConceptScore W4319789211C146978453 @default.
- W4319789211 hasConceptScore W4319789211C153294291 @default.
- W4319789211 hasConceptScore W4319789211C154945302 @default.
- W4319789211 hasConceptScore W4319789211C196558001 @default.
- W4319789211 hasConceptScore W4319789211C2775840915 @default.
- W4319789211 hasConceptScore W4319789211C41008148 @default.
- W4319789211 hasConceptScore W4319789211C50644808 @default.
- W4319789211 hasConceptScore W4319789211C76563973 @default.
- W4319789211 hasConceptScore W4319789211C97541855 @default.
- W4319789211 hasConceptScore W4319789211C98083399 @default.