Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319813032> ?p ?o ?g. }
- W4319813032 endingPage "e41450" @default.
- W4319813032 startingPage "e41450" @default.
- W4319813032 abstract "Opioid-related overdose mortality has remained at crisis levels across the United States, increasing 5-fold and worsened during the COVID-19 pandemic. The ability to provide forecasts of opioid-related mortality at granular geographical and temporal scales may help guide preemptive public health responses. Current forecasting models focus on prediction on a large geographical scale, such as states or counties, lacking the spatial granularity that local public health officials desire to guide policy decisions and resource allocation.The overarching objective of our study was to develop Bayesian spatiotemporal dynamic models to predict opioid-related mortality counts and rates at temporally and geographically granular scales (ie, ZIP Code Tabulation Areas [ZCTAs]) for Massachusetts.We obtained decedent data from the Massachusetts Registry of Vital Records and Statistics for 2005 through 2019. We developed Bayesian spatiotemporal dynamic models to predict opioid-related mortality across Massachusetts' 537 ZCTAs. We evaluated the prediction performance of our models using the one-year ahead approach. We investigated the potential improvement of prediction accuracy by incorporating ZCTA-level demographic and socioeconomic determinants. We identified ZCTAs with the highest predicted opioid-related mortality in terms of rates and counts and stratified them by rural and urban areas.Bayesian dynamic models with the full spatial and temporal dependency performed best. Inclusion of the ZCTA-level demographic and socioeconomic variables as predictors improved the prediction accuracy, but only in the model that did not account for the neighborhood-level spatial dependency of the ZCTAs. Predictions were better for urban areas than for rural areas, which were more sparsely populated. Using the best performing model and the Massachusetts opioid-related mortality data from 2005 through 2019, our models suggested a stabilizing pattern in opioid-related overdose mortality in 2020 and 2021 if there were no disruptive changes to the trends observed for 2005-2019.Our Bayesian spatiotemporal models focused on opioid-related overdose mortality data facilitated prediction approaches that can inform preemptive public health decision-making and resource allocation. While sparse data from rural and less populated locales typically pose special challenges in small area predictions, our dynamic Bayesian models, which maximized information borrowing across geographic areas and time points, were used to provide more accurate predictions for small areas. Such approaches can be replicated in other jurisdictions and at varying temporal and geographical levels. We encourage the formation of a modeling consortium for fatal opioid-related overdose predictions, where different modeling techniques could be ensembled to inform public health policy." @default.
- W4319813032 created "2023-02-11" @default.
- W4319813032 creator A5005827999 @default.
- W4319813032 creator A5041921767 @default.
- W4319813032 creator A5042149273 @default.
- W4319813032 creator A5050346127 @default.
- W4319813032 creator A5066754149 @default.
- W4319813032 creator A5074134677 @default.
- W4319813032 creator A5075270124 @default.
- W4319813032 date "2023-02-10" @default.
- W4319813032 modified "2023-10-03" @default.
- W4319813032 title "Small Area Forecasting of Opioid-Related Mortality: Bayesian Spatiotemporal Dynamic Modeling Approach" @default.
- W4319813032 cites W143236119 @default.
- W4319813032 cites W1747046542 @default.
- W4319813032 cites W2099691002 @default.
- W4319813032 cites W2108687933 @default.
- W4319813032 cites W2114220616 @default.
- W4319813032 cites W2605459466 @default.
- W4319813032 cites W2736907273 @default.
- W4319813032 cites W2890298149 @default.
- W4319813032 cites W2906591149 @default.
- W4319813032 cites W2914014906 @default.
- W4319813032 cites W2949738337 @default.
- W4319813032 cites W2987302619 @default.
- W4319813032 cites W3040801838 @default.
- W4319813032 cites W3068656837 @default.
- W4319813032 cites W3081455983 @default.
- W4319813032 cites W3090126300 @default.
- W4319813032 cites W3092015210 @default.
- W4319813032 cites W3113082565 @default.
- W4319813032 cites W3135291928 @default.
- W4319813032 cites W3151317736 @default.
- W4319813032 cites W3209025934 @default.
- W4319813032 cites W4206256446 @default.
- W4319813032 cites W4223466744 @default.
- W4319813032 cites W4229457923 @default.
- W4319813032 doi "https://doi.org/10.2196/41450" @default.
- W4319813032 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36763450" @default.
- W4319813032 hasPublicationYear "2023" @default.
- W4319813032 type Work @default.
- W4319813032 citedByCount "2" @default.
- W4319813032 countsByYear W43198130322023 @default.
- W4319813032 crossrefType "journal-article" @default.
- W4319813032 hasAuthorship W4319813032A5005827999 @default.
- W4319813032 hasAuthorship W4319813032A5041921767 @default.
- W4319813032 hasAuthorship W4319813032A5042149273 @default.
- W4319813032 hasAuthorship W4319813032A5050346127 @default.
- W4319813032 hasAuthorship W4319813032A5066754149 @default.
- W4319813032 hasAuthorship W4319813032A5074134677 @default.
- W4319813032 hasAuthorship W4319813032A5075270124 @default.
- W4319813032 hasBestOaLocation W43198130321 @default.
- W4319813032 hasConcept C107673813 @default.
- W4319813032 hasConcept C126322002 @default.
- W4319813032 hasConcept C147077947 @default.
- W4319813032 hasConcept C149782125 @default.
- W4319813032 hasConcept C154945302 @default.
- W4319813032 hasConcept C158709400 @default.
- W4319813032 hasConcept C162324750 @default.
- W4319813032 hasConcept C170493617 @default.
- W4319813032 hasConcept C18903297 @default.
- W4319813032 hasConcept C205649164 @default.
- W4319813032 hasConcept C2778750930 @default.
- W4319813032 hasConcept C2779148768 @default.
- W4319813032 hasConcept C2781063702 @default.
- W4319813032 hasConcept C2908647359 @default.
- W4319813032 hasConcept C41008148 @default.
- W4319813032 hasConcept C71924100 @default.
- W4319813032 hasConcept C86803240 @default.
- W4319813032 hasConcept C99454951 @default.
- W4319813032 hasConceptScore W4319813032C107673813 @default.
- W4319813032 hasConceptScore W4319813032C126322002 @default.
- W4319813032 hasConceptScore W4319813032C147077947 @default.
- W4319813032 hasConceptScore W4319813032C149782125 @default.
- W4319813032 hasConceptScore W4319813032C154945302 @default.
- W4319813032 hasConceptScore W4319813032C158709400 @default.
- W4319813032 hasConceptScore W4319813032C162324750 @default.
- W4319813032 hasConceptScore W4319813032C170493617 @default.
- W4319813032 hasConceptScore W4319813032C18903297 @default.
- W4319813032 hasConceptScore W4319813032C205649164 @default.
- W4319813032 hasConceptScore W4319813032C2778750930 @default.
- W4319813032 hasConceptScore W4319813032C2779148768 @default.
- W4319813032 hasConceptScore W4319813032C2781063702 @default.
- W4319813032 hasConceptScore W4319813032C2908647359 @default.
- W4319813032 hasConceptScore W4319813032C41008148 @default.
- W4319813032 hasConceptScore W4319813032C71924100 @default.
- W4319813032 hasConceptScore W4319813032C86803240 @default.
- W4319813032 hasConceptScore W4319813032C99454951 @default.
- W4319813032 hasLocation W43198130321 @default.
- W4319813032 hasLocation W43198130322 @default.
- W4319813032 hasLocation W43198130323 @default.
- W4319813032 hasOpenAccess W4319813032 @default.
- W4319813032 hasPrimaryLocation W43198130321 @default.
- W4319813032 hasRelatedWork W1991434599 @default.
- W4319813032 hasRelatedWork W2011118020 @default.
- W4319813032 hasRelatedWork W2402527920 @default.
- W4319813032 hasRelatedWork W2748952813 @default.
- W4319813032 hasRelatedWork W2899084033 @default.
- W4319813032 hasRelatedWork W4226050903 @default.