Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319825670> ?p ?o ?g. }
- W4319825670 endingPage "1053" @default.
- W4319825670 startingPage "1045" @default.
- W4319825670 abstract "We aimed to design and evaluate a deep learning-based method to automatically predict the time-varying in-plane blood flow velocity within the cardiac cavities in long-axis cine MRI, validated against 4D flow.A convolutional neural network (CNN) was implemented, taking cine MRI as the input and the in-plane velocity derived from the 4D flow acquisition as the ground truth. The method was evaluated using velocity vector end-point error (EPE) and angle error. Additionally, the E/A ratio and diastolic function classification derived from the predicted velocities were compared to those derived from 4D flow.For intra-cardiac pixels with a velocity > 5 cm/s, our method achieved an EPE of 8.65 cm/s and angle error of 41.27°. For pixels with a velocity > 25 cm/s, the angle error significantly degraded to 19.26°. Although the averaged blood flow velocity prediction was under-estimated by 26.69%, the high correlation (PCC = 0.95) of global time-varying velocity and the visual evaluation demonstrate a good agreement between our prediction and 4D flow data. The E/A ratio was derived with minimal bias, but with considerable mean absolute error of 0.39 and wide limits of agreement. The diastolic function classification showed a high accuracy of 86.9%.Using a deep learning-based algorithm, intra-cardiac blood flow velocities can be predicted from long-axis cine MRI with high correlation with 4D flow derived velocities. Visualization of the derived velocities provides adjunct functional information and may potentially be used to derive the E/A ratio from conventional CMR exams." @default.
- W4319825670 created "2023-02-11" @default.
- W4319825670 creator A5048648478 @default.
- W4319825670 creator A5069054082 @default.
- W4319825670 creator A5070003455 @default.
- W4319825670 creator A5071722384 @default.
- W4319825670 creator A5073797317 @default.
- W4319825670 creator A5087261864 @default.
- W4319825670 date "2023-02-10" @default.
- W4319825670 modified "2023-10-14" @default.
- W4319825670 title "Deep learning-based prediction of intra-cardiac blood flow in long-axis cine magnetic resonance imaging" @default.
- W4319825670 cites W1901129140 @default.
- W4319825670 cites W1977132134 @default.
- W4319825670 cites W1988906932 @default.
- W4319825670 cites W2057637671 @default.
- W4319825670 cites W2062259209 @default.
- W4319825670 cites W2069444004 @default.
- W4319825670 cites W2113162826 @default.
- W4319825670 cites W2122678409 @default.
- W4319825670 cites W2126882739 @default.
- W4319825670 cites W2130856855 @default.
- W4319825670 cites W2131975487 @default.
- W4319825670 cites W2136027815 @default.
- W4319825670 cites W2169051451 @default.
- W4319825670 cites W2194775991 @default.
- W4319825670 cites W2594787281 @default.
- W4319825670 cites W2611871305 @default.
- W4319825670 cites W2743144186 @default.
- W4319825670 cites W2805285736 @default.
- W4319825670 cites W3080301476 @default.
- W4319825670 cites W3092031931 @default.
- W4319825670 cites W3128081454 @default.
- W4319825670 cites W3178313561 @default.
- W4319825670 cites W4232468181 @default.
- W4319825670 doi "https://doi.org/10.1007/s10554-023-02804-2" @default.
- W4319825670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36763209" @default.
- W4319825670 hasPublicationYear "2023" @default.
- W4319825670 type Work @default.
- W4319825670 citedByCount "0" @default.
- W4319825670 crossrefType "journal-article" @default.
- W4319825670 hasAuthorship W4319825670A5048648478 @default.
- W4319825670 hasAuthorship W4319825670A5069054082 @default.
- W4319825670 hasAuthorship W4319825670A5070003455 @default.
- W4319825670 hasAuthorship W4319825670A5071722384 @default.
- W4319825670 hasAuthorship W4319825670A5073797317 @default.
- W4319825670 hasAuthorship W4319825670A5087261864 @default.
- W4319825670 hasBestOaLocation W43198256701 @default.
- W4319825670 hasConcept C115961682 @default.
- W4319825670 hasConcept C121332964 @default.
- W4319825670 hasConcept C124504099 @default.
- W4319825670 hasConcept C126838900 @default.
- W4319825670 hasConcept C143409427 @default.
- W4319825670 hasConcept C154945302 @default.
- W4319825670 hasConcept C158846371 @default.
- W4319825670 hasConcept C160633673 @default.
- W4319825670 hasConcept C164705383 @default.
- W4319825670 hasConcept C166693061 @default.
- W4319825670 hasConcept C20749125 @default.
- W4319825670 hasConcept C2776127602 @default.
- W4319825670 hasConcept C38349280 @default.
- W4319825670 hasConcept C41008148 @default.
- W4319825670 hasConcept C46141821 @default.
- W4319825670 hasConcept C57879066 @default.
- W4319825670 hasConcept C71924100 @default.
- W4319825670 hasConcept C81363708 @default.
- W4319825670 hasConceptScore W4319825670C115961682 @default.
- W4319825670 hasConceptScore W4319825670C121332964 @default.
- W4319825670 hasConceptScore W4319825670C124504099 @default.
- W4319825670 hasConceptScore W4319825670C126838900 @default.
- W4319825670 hasConceptScore W4319825670C143409427 @default.
- W4319825670 hasConceptScore W4319825670C154945302 @default.
- W4319825670 hasConceptScore W4319825670C158846371 @default.
- W4319825670 hasConceptScore W4319825670C160633673 @default.
- W4319825670 hasConceptScore W4319825670C164705383 @default.
- W4319825670 hasConceptScore W4319825670C166693061 @default.
- W4319825670 hasConceptScore W4319825670C20749125 @default.
- W4319825670 hasConceptScore W4319825670C2776127602 @default.
- W4319825670 hasConceptScore W4319825670C38349280 @default.
- W4319825670 hasConceptScore W4319825670C41008148 @default.
- W4319825670 hasConceptScore W4319825670C46141821 @default.
- W4319825670 hasConceptScore W4319825670C57879066 @default.
- W4319825670 hasConceptScore W4319825670C71924100 @default.
- W4319825670 hasConceptScore W4319825670C81363708 @default.
- W4319825670 hasFunder F4320322725 @default.
- W4319825670 hasIssue "5" @default.
- W4319825670 hasLocation W43198256701 @default.
- W4319825670 hasLocation W43198256702 @default.
- W4319825670 hasLocation W43198256703 @default.
- W4319825670 hasLocation W43198256704 @default.
- W4319825670 hasOpenAccess W4319825670 @default.
- W4319825670 hasPrimaryLocation W43198256701 @default.
- W4319825670 hasRelatedWork W1995887718 @default.
- W4319825670 hasRelatedWork W2015348914 @default.
- W4319825670 hasRelatedWork W2101923511 @default.
- W4319825670 hasRelatedWork W2127319202 @default.
- W4319825670 hasRelatedWork W2143467221 @default.
- W4319825670 hasRelatedWork W2738361667 @default.
- W4319825670 hasRelatedWork W2976316911 @default.