Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319826310> ?p ?o ?g. }
- W4319826310 abstract "Abstract The generative adversarial network (GAN) is a promising deep learning method for generating images. We evaluated the generation of highly realistic and high-resolution chest radiographs (CXRs) using progressive growing GAN (PGGAN). We trained two PGGAN models using normal and abnormal CXRs, solely relying on normal CXRs to demonstrate the quality of synthetic CXRs that were 1000 × 1000 pixels in size. Image Turing tests were evaluated by six radiologists in a binary fashion using two independent validation sets to judge the authenticity of each CXR, with a mean accuracy of 67.42% and 69.92% for the first and second trials, respectively. Inter-reader agreements were poor for the first (κ = 0.10) and second (κ = 0.14) Turing tests. Additionally, a convolutional neural network (CNN) was used to classify normal or abnormal CXR using only real images and/or synthetic images mixed datasets. The accuracy of the CNN model trained using a mixed dataset of synthetic and real data was 93.3%, compared to 91.0% for the model built using only the real data. PGGAN was able to generate CXRs that were identical to real CXRs, and this showed promise to overcome imbalances between classes in CNN training." @default.
- W4319826310 created "2023-02-11" @default.
- W4319826310 creator A5001490445 @default.
- W4319826310 creator A5004946653 @default.
- W4319826310 creator A5006695326 @default.
- W4319826310 creator A5008101431 @default.
- W4319826310 creator A5015288252 @default.
- W4319826310 creator A5015908436 @default.
- W4319826310 creator A5036126889 @default.
- W4319826310 creator A5036897288 @default.
- W4319826310 creator A5040723886 @default.
- W4319826310 creator A5041699601 @default.
- W4319826310 creator A5075306961 @default.
- W4319826310 creator A5077714765 @default.
- W4319826310 creator A5080844931 @default.
- W4319826310 date "2023-02-09" @default.
- W4319826310 modified "2023-09-26" @default.
- W4319826310 title "Image Turing test and its applications on synthetic chest radiographs by using the progressive growing generative adversarial network" @default.
- W4319826310 cites W2253590344 @default.
- W4319826310 cites W2592929672 @default.
- W4319826310 cites W2610332124 @default.
- W4319826310 cites W2767106145 @default.
- W4319826310 cites W2767236661 @default.
- W4319826310 cites W2777186991 @default.
- W4319826310 cites W2794022343 @default.
- W4319826310 cites W2798401174 @default.
- W4319826310 cites W2887746098 @default.
- W4319826310 cites W2900003150 @default.
- W4319826310 cites W2901030517 @default.
- W4319826310 cites W2904319976 @default.
- W4319826310 cites W2909240409 @default.
- W4319826310 cites W2913223168 @default.
- W4319826310 cites W2945263066 @default.
- W4319826310 cites W2946637133 @default.
- W4319826310 cites W2963882942 @default.
- W4319826310 cites W2984306354 @default.
- W4319826310 cites W2989219518 @default.
- W4319826310 cites W2997422821 @default.
- W4319826310 cites W2998954342 @default.
- W4319826310 cites W3009705059 @default.
- W4319826310 cites W3014785587 @default.
- W4319826310 cites W3022030009 @default.
- W4319826310 cites W3034635466 @default.
- W4319826310 cites W3082317190 @default.
- W4319826310 cites W3096831136 @default.
- W4319826310 cites W3101647981 @default.
- W4319826310 cites W3118577024 @default.
- W4319826310 cites W3126531098 @default.
- W4319826310 cites W3129224130 @default.
- W4319826310 cites W3189316345 @default.
- W4319826310 cites W4224267945 @default.
- W4319826310 cites W4241635929 @default.
- W4319826310 cites W4254785352 @default.
- W4319826310 cites W4294214983 @default.
- W4319826310 doi "https://doi.org/10.1038/s41598-023-28175-1" @default.
- W4319826310 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36759636" @default.
- W4319826310 hasPublicationYear "2023" @default.
- W4319826310 type Work @default.
- W4319826310 citedByCount "0" @default.
- W4319826310 crossrefType "journal-article" @default.
- W4319826310 hasAuthorship W4319826310A5001490445 @default.
- W4319826310 hasAuthorship W4319826310A5004946653 @default.
- W4319826310 hasAuthorship W4319826310A5006695326 @default.
- W4319826310 hasAuthorship W4319826310A5008101431 @default.
- W4319826310 hasAuthorship W4319826310A5015288252 @default.
- W4319826310 hasAuthorship W4319826310A5015908436 @default.
- W4319826310 hasAuthorship W4319826310A5036126889 @default.
- W4319826310 hasAuthorship W4319826310A5036897288 @default.
- W4319826310 hasAuthorship W4319826310A5040723886 @default.
- W4319826310 hasAuthorship W4319826310A5041699601 @default.
- W4319826310 hasAuthorship W4319826310A5075306961 @default.
- W4319826310 hasAuthorship W4319826310A5077714765 @default.
- W4319826310 hasAuthorship W4319826310A5080844931 @default.
- W4319826310 hasBestOaLocation W43198263101 @default.
- W4319826310 hasConcept C108583219 @default.
- W4319826310 hasConcept C115961682 @default.
- W4319826310 hasConcept C126838900 @default.
- W4319826310 hasConcept C153180895 @default.
- W4319826310 hasConcept C154945302 @default.
- W4319826310 hasConcept C160633673 @default.
- W4319826310 hasConcept C2988773926 @default.
- W4319826310 hasConcept C36454342 @default.
- W4319826310 hasConcept C41008148 @default.
- W4319826310 hasConcept C577917 @default.
- W4319826310 hasConcept C71924100 @default.
- W4319826310 hasConcept C81363708 @default.
- W4319826310 hasConceptScore W4319826310C108583219 @default.
- W4319826310 hasConceptScore W4319826310C115961682 @default.
- W4319826310 hasConceptScore W4319826310C126838900 @default.
- W4319826310 hasConceptScore W4319826310C153180895 @default.
- W4319826310 hasConceptScore W4319826310C154945302 @default.
- W4319826310 hasConceptScore W4319826310C160633673 @default.
- W4319826310 hasConceptScore W4319826310C2988773926 @default.
- W4319826310 hasConceptScore W4319826310C36454342 @default.
- W4319826310 hasConceptScore W4319826310C41008148 @default.
- W4319826310 hasConceptScore W4319826310C577917 @default.
- W4319826310 hasConceptScore W4319826310C71924100 @default.
- W4319826310 hasConceptScore W4319826310C81363708 @default.
- W4319826310 hasFunder F4320322034 @default.
- W4319826310 hasIssue "1" @default.