Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319832790> ?p ?o ?g. }
- W4319832790 endingPage "427" @default.
- W4319832790 startingPage "393" @default.
- W4319832790 abstract "A plethora of academic papers on generalized autoregressive conditional heteroscedasticity (GARCH) models for bitcoin and other cryptocurrencies have been published in academic journals. Yet few, if indeed any, of these are employed by practitioners. Previous academic studies produce results that are fragmented, confusing and conflicting, so there is no commercial incentive to drive an expensive implementation of complex multivariate GARCH models, which anyway would commonly require more data for calibration than are available in the history of most cryptocurrencies, at least at the daily frequency. Consequently, this paper assesses the forecasting accuracy of simple parametric RiskMetricsTM type volatility and covariance models, with a focus on ad hoc parameter choice instead of a data-intensive calibration procedure. We provide extensive backtests of hourly and daily Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts that are regarded as best practice in the industry and commonly used for regulatory approval. Our results demonstrate that much simpler models in the exponentially weighted moving average (EWMA) class are just as accurate as GARCH models for VaR and ES forecasting, provided they capture an asymmetric volatility response and a heavy-tailed returns distribution. Moreover, on ranking each model's variance and covariance forecasts using average scores generated from proper univariate and multivariate scoring rules, there is no evidence of superior performance of variance and covariance forecasts generated by GARCH models, using either daily or hourly data." @default.
- W4319832790 created "2023-02-11" @default.
- W4319832790 creator A5005639807 @default.
- W4319832790 creator A5078084812 @default.
- W4319832790 date "2023-01-20" @default.
- W4319832790 modified "2023-10-01" @default.
- W4319832790 title "Assessing the accuracy of exponentially weighted moving average models for Value-at-Risk and Expected Shortfall of crypto portfolios" @default.
- W4319832790 cites W1519158075 @default.
- W4319832790 cites W1559422448 @default.
- W4319832790 cites W1727659491 @default.
- W4319832790 cites W1971604478 @default.
- W4319832790 cites W1977480757 @default.
- W4319832790 cites W1977970167 @default.
- W4319832790 cites W1984113680 @default.
- W4319832790 cites W1985658808 @default.
- W4319832790 cites W1987472734 @default.
- W4319832790 cites W1999814123 @default.
- W4319832790 cites W1999996900 @default.
- W4319832790 cites W2000303290 @default.
- W4319832790 cites W2001919709 @default.
- W4319832790 cites W2005424182 @default.
- W4319832790 cites W2013109882 @default.
- W4319832790 cites W2016503085 @default.
- W4319832790 cites W2018364810 @default.
- W4319832790 cites W2025720061 @default.
- W4319832790 cites W2054513759 @default.
- W4319832790 cites W2061160212 @default.
- W4319832790 cites W2065089656 @default.
- W4319832790 cites W2079898209 @default.
- W4319832790 cites W2112339981 @default.
- W4319832790 cites W2125536334 @default.
- W4319832790 cites W2126198089 @default.
- W4319832790 cites W2126434678 @default.
- W4319832790 cites W2135177937 @default.
- W4319832790 cites W2145501956 @default.
- W4319832790 cites W2146399390 @default.
- W4319832790 cites W2150747312 @default.
- W4319832790 cites W2164923280 @default.
- W4319832790 cites W2167162925 @default.
- W4319832790 cites W2202143919 @default.
- W4319832790 cites W2526568049 @default.
- W4319832790 cites W2549813755 @default.
- W4319832790 cites W2585904248 @default.
- W4319832790 cites W2694190980 @default.
- W4319832790 cites W2744367813 @default.
- W4319832790 cites W2759609844 @default.
- W4319832790 cites W2765909833 @default.
- W4319832790 cites W2786901113 @default.
- W4319832790 cites W2793599258 @default.
- W4319832790 cites W2793906868 @default.
- W4319832790 cites W2886561026 @default.
- W4319832790 cites W2887817809 @default.
- W4319832790 cites W2887883206 @default.
- W4319832790 cites W2892579226 @default.
- W4319832790 cites W2901527210 @default.
- W4319832790 cites W2907748550 @default.
- W4319832790 cites W2908108931 @default.
- W4319832790 cites W2921045310 @default.
- W4319832790 cites W2929682054 @default.
- W4319832790 cites W2938869291 @default.
- W4319832790 cites W2943001632 @default.
- W4319832790 cites W2945425436 @default.
- W4319832790 cites W2969262985 @default.
- W4319832790 cites W2971397343 @default.
- W4319832790 cites W2974647617 @default.
- W4319832790 cites W2978919840 @default.
- W4319832790 cites W2983744991 @default.
- W4319832790 cites W2997158722 @default.
- W4319832790 cites W2998669639 @default.
- W4319832790 cites W3008053121 @default.
- W4319832790 cites W3033244951 @default.
- W4319832790 cites W3035007220 @default.
- W4319832790 cites W3046057594 @default.
- W4319832790 cites W3081449056 @default.
- W4319832790 cites W3122046970 @default.
- W4319832790 cites W3122310799 @default.
- W4319832790 cites W3122446295 @default.
- W4319832790 cites W3123118666 @default.
- W4319832790 cites W3123650220 @default.
- W4319832790 cites W3125986434 @default.
- W4319832790 cites W3153470587 @default.
- W4319832790 cites W3193158160 @default.
- W4319832790 cites W4291327732 @default.
- W4319832790 cites W4308712869 @default.
- W4319832790 cites W846844103 @default.
- W4319832790 cites W3014436625 @default.
- W4319832790 doi "https://doi.org/10.1080/14697688.2022.2159505" @default.
- W4319832790 hasPublicationYear "2023" @default.
- W4319832790 type Work @default.
- W4319832790 citedByCount "0" @default.
- W4319832790 crossrefType "journal-article" @default.
- W4319832790 hasAuthorship W4319832790A5005639807 @default.
- W4319832790 hasAuthorship W4319832790A5078084812 @default.
- W4319832790 hasBestOaLocation W43198327901 @default.
- W4319832790 hasConcept C101104100 @default.
- W4319832790 hasConcept C10138342 @default.
- W4319832790 hasConcept C105795698 @default.
- W4319832790 hasConcept C106159729 @default.