Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319836079> ?p ?o ?g. }
- W4319836079 endingPage "20" @default.
- W4319836079 startingPage "1" @default.
- W4319836079 abstract "Visual Analytics approach allows driving informed and effective decision-making. It assists decision-makers to visually interact with large amount of data and to computationally learn valuable hidden patterns in that data, which improve the decision quality. In this article, we introduce an enhanced visual analytics model combining cognitive-based visual analysis to data mining-based automatic analysis. As emotions are strongly related to human behaviour and society, emotion prediction is widely considered by decision making activities. Unlike speech and facial expressions modalities, EEG (electroencephalogram) has the advantage of being able to record information about the internal emotional state that is not always translated by perceptible external manifestations. For this reason, we applied the proposed cognitive approach on EEG data to demonstrate its efficiency for predicting emotional reaction to films. For automatic analysis, we developed the Echo State Network (ESN) technique considered as an efficient machine learning solution due to its straightforward training procedure and high modelling ability for handling time-series problems. Finally, utility and usability tests were performed to evaluate the developed prototype." @default.
- W4319836079 created "2023-02-11" @default.
- W4319836079 creator A5028634075 @default.
- W4319836079 creator A5074521145 @default.
- W4319836079 creator A5089206286 @default.
- W4319836079 date "2023-01-20" @default.
- W4319836079 modified "2023-10-16" @default.
- W4319836079 title "Decision-making based on an improved visual analytics approach for emotion prediction" @default.
- W4319836079 cites W1225838880 @default.
- W4319836079 cites W1914475855 @default.
- W4319836079 cites W1952173784 @default.
- W4319836079 cites W1968448651 @default.
- W4319836079 cites W1970727126 @default.
- W4319836079 cites W1987968210 @default.
- W4319836079 cites W2007318496 @default.
- W4319836079 cites W2010319872 @default.
- W4319836079 cites W2024202481 @default.
- W4319836079 cites W2041645455 @default.
- W4319836079 cites W2044988964 @default.
- W4319836079 cites W2073800769 @default.
- W4319836079 cites W2084001690 @default.
- W4319836079 cites W2090687959 @default.
- W4319836079 cites W2103179919 @default.
- W4319836079 cites W2118706537 @default.
- W4319836079 cites W2121003513 @default.
- W4319836079 cites W2128495200 @default.
- W4319836079 cites W2141115795 @default.
- W4319836079 cites W2161133721 @default.
- W4319836079 cites W2313747897 @default.
- W4319836079 cites W2674025757 @default.
- W4319836079 cites W2766225131 @default.
- W4319836079 cites W2788844524 @default.
- W4319836079 cites W2887674935 @default.
- W4319836079 cites W2905763413 @default.
- W4319836079 cites W2960600329 @default.
- W4319836079 cites W2971803538 @default.
- W4319836079 cites W2995267623 @default.
- W4319836079 cites W3000232078 @default.
- W4319836079 cites W3011304975 @default.
- W4319836079 cites W3022194174 @default.
- W4319836079 cites W3032135501 @default.
- W4319836079 cites W3093400026 @default.
- W4319836079 cites W3101278268 @default.
- W4319836079 cites W3107493413 @default.
- W4319836079 cites W3121961986 @default.
- W4319836079 cites W3133817364 @default.
- W4319836079 cites W3148231529 @default.
- W4319836079 cites W3156005160 @default.
- W4319836079 cites W3156356077 @default.
- W4319836079 cites W3159947924 @default.
- W4319836079 cites W3165055457 @default.
- W4319836079 cites W3203998598 @default.
- W4319836079 cites W4235291264 @default.
- W4319836079 cites W4236227461 @default.
- W4319836079 cites W4245597957 @default.
- W4319836079 cites W52008786 @default.
- W4319836079 cites W884650706 @default.
- W4319836079 doi "https://doi.org/10.3233/idt-220263" @default.
- W4319836079 hasPublicationYear "2023" @default.
- W4319836079 type Work @default.
- W4319836079 citedByCount "1" @default.
- W4319836079 countsByYear W43198360792023 @default.
- W4319836079 crossrefType "journal-article" @default.
- W4319836079 hasAuthorship W4319836079A5028634075 @default.
- W4319836079 hasAuthorship W4319836079A5074521145 @default.
- W4319836079 hasAuthorship W4319836079A5089206286 @default.
- W4319836079 hasConcept C107457646 @default.
- W4319836079 hasConcept C118552586 @default.
- W4319836079 hasConcept C119857082 @default.
- W4319836079 hasConcept C124101348 @default.
- W4319836079 hasConcept C144024400 @default.
- W4319836079 hasConcept C154945302 @default.
- W4319836079 hasConcept C15744967 @default.
- W4319836079 hasConcept C169760540 @default.
- W4319836079 hasConcept C169900460 @default.
- W4319836079 hasConcept C170130773 @default.
- W4319836079 hasConcept C2779903281 @default.
- W4319836079 hasConcept C36289849 @default.
- W4319836079 hasConcept C36464697 @default.
- W4319836079 hasConcept C41008148 @default.
- W4319836079 hasConcept C522805319 @default.
- W4319836079 hasConcept C59732488 @default.
- W4319836079 hasConcept C79158427 @default.
- W4319836079 hasConceptScore W4319836079C107457646 @default.
- W4319836079 hasConceptScore W4319836079C118552586 @default.
- W4319836079 hasConceptScore W4319836079C119857082 @default.
- W4319836079 hasConceptScore W4319836079C124101348 @default.
- W4319836079 hasConceptScore W4319836079C144024400 @default.
- W4319836079 hasConceptScore W4319836079C154945302 @default.
- W4319836079 hasConceptScore W4319836079C15744967 @default.
- W4319836079 hasConceptScore W4319836079C169760540 @default.
- W4319836079 hasConceptScore W4319836079C169900460 @default.
- W4319836079 hasConceptScore W4319836079C170130773 @default.
- W4319836079 hasConceptScore W4319836079C2779903281 @default.
- W4319836079 hasConceptScore W4319836079C36289849 @default.
- W4319836079 hasConceptScore W4319836079C36464697 @default.
- W4319836079 hasConceptScore W4319836079C41008148 @default.
- W4319836079 hasConceptScore W4319836079C522805319 @default.