Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319869237> ?p ?o ?g. }
- W4319869237 endingPage "101736" @default.
- W4319869237 startingPage "101736" @default.
- W4319869237 abstract "This study aimed to explore the relationship between physical fitness and the academic performance of primary school students and to predict the academic performance associated with physical fitness using machine learning methods. The results provide new evidence confirming the relationship between physical fitness and the academic performance of primary school students. This study provides a practical foundation for early intervention methods to improve the physical fitness and academic performance of primary school students via physical exercise.A total of 432 fifth-grade students from five primary schools in Huai'an, China, were selected using the cluster sampling method. Their physical fitness was evaluated in terms of their body mass index, muscle strength, flexibility, speed, and aerobic endurance. The final exam scores in Chinese, mathematics, and foreign language were used to quantify their academic performance. The Mann-Whitney U test was used to investigate the differences in physical fitness between academic performance groups. The Spearman correlation analysis was used to quantify the relationship between physical fitness and academic performance. Machine learning models based on random forest (RF), support vector machine (SVM), and K-nearest neighbor (KNN) algorithms were used to predict the academic performance of primary school students. The respective prediction performances of machine learning models were evaluated using the accuracy and validated in the test sample.The body mass index (z = -2.046, p < 0.05) of high-score (HS) primary school students was lower than non-high-score (NHS) students, and the upper limb (z = -2.143, p < 0.05), trunk (z = -3.399, p < 0.05), and lower limb strength (z = -2.525, p < 0.05) and aerobic endurance (z = -2.105, p < 0.05) of HS students were better than NHS students. The academic performance of primary school students was negatively correlated with body mass index (r = -0.105, p < 0.05) and positively correlated with upper limb (r = 0.11, p < 0.05), trunk (r = 0.175, p < 0.05), and lower limb strength (r = 0.13, p < 0.05) and aerobic endurance (r = -0.108, p < 0.05). The average accuracy of RF, SVM, and KNN models in predicting the academic performance of primary school students in training samples were 59.4% ± 5.16%, 56.41% ± 3.81% and 57.89% ± 4.98%, respectively, which were found to be higher than baseline accuracy, as validated in the test sample.The body mass index, muscle strength, and aerobic endurance of primary school students are significantly different between academic performance groups and are correlated with their academic performance. Machine learning methods can effectively predict academic performance associated with the physical fitness of primary school students." @default.
- W4319869237 created "2023-02-11" @default.
- W4319869237 creator A5019092103 @default.
- W4319869237 creator A5028644647 @default.
- W4319869237 date "2023-05-01" @default.
- W4319869237 modified "2023-10-01" @default.
- W4319869237 title "Predicting academic performance associated with physical fitness of primary school students using machine learning methods" @default.
- W4319869237 cites W1502991139 @default.
- W4319869237 cites W1968725303 @default.
- W4319869237 cites W1976273500 @default.
- W4319869237 cites W2007735734 @default.
- W4319869237 cites W2008056655 @default.
- W4319869237 cites W2069216324 @default.
- W4319869237 cites W2097498981 @default.
- W4319869237 cites W2102182519 @default.
- W4319869237 cites W2116237108 @default.
- W4319869237 cites W2117414453 @default.
- W4319869237 cites W2118978333 @default.
- W4319869237 cites W2121478181 @default.
- W4319869237 cites W2121678944 @default.
- W4319869237 cites W2122089745 @default.
- W4319869237 cites W2122111042 @default.
- W4319869237 cites W2129030266 @default.
- W4319869237 cites W2135224099 @default.
- W4319869237 cites W2139212933 @default.
- W4319869237 cites W2145423716 @default.
- W4319869237 cites W2149696172 @default.
- W4319869237 cites W2157033737 @default.
- W4319869237 cites W2516549643 @default.
- W4319869237 cites W2620363470 @default.
- W4319869237 cites W2742084467 @default.
- W4319869237 cites W2757426426 @default.
- W4319869237 cites W2802502226 @default.
- W4319869237 cites W2900455036 @default.
- W4319869237 cites W2905064344 @default.
- W4319869237 cites W2935878216 @default.
- W4319869237 cites W2966311710 @default.
- W4319869237 cites W2970852766 @default.
- W4319869237 cites W2990020341 @default.
- W4319869237 cites W2998111941 @default.
- W4319869237 cites W3121063034 @default.
- W4319869237 cites W3154349002 @default.
- W4319869237 cites W3186910135 @default.
- W4319869237 cites W3208482597 @default.
- W4319869237 cites W3212186608 @default.
- W4319869237 cites W4206654689 @default.
- W4319869237 doi "https://doi.org/10.1016/j.ctcp.2023.101736" @default.
- W4319869237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36821949" @default.
- W4319869237 hasPublicationYear "2023" @default.
- W4319869237 type Work @default.
- W4319869237 citedByCount "1" @default.
- W4319869237 countsByYear W43198692372023 @default.
- W4319869237 crossrefType "journal-article" @default.
- W4319869237 hasAuthorship W4319869237A5019092103 @default.
- W4319869237 hasAuthorship W4319869237A5028644647 @default.
- W4319869237 hasConcept C105795698 @default.
- W4319869237 hasConcept C119857082 @default.
- W4319869237 hasConcept C12267149 @default.
- W4319869237 hasConcept C12868164 @default.
- W4319869237 hasConcept C142724271 @default.
- W4319869237 hasConcept C145420912 @default.
- W4319869237 hasConcept C151730666 @default.
- W4319869237 hasConcept C154945302 @default.
- W4319869237 hasConcept C15744967 @default.
- W4319869237 hasConcept C171687745 @default.
- W4319869237 hasConcept C1862650 @default.
- W4319869237 hasConcept C2777267654 @default.
- W4319869237 hasConcept C2780221984 @default.
- W4319869237 hasConcept C33923547 @default.
- W4319869237 hasConcept C41008148 @default.
- W4319869237 hasConcept C71924100 @default.
- W4319869237 hasConcept C86803240 @default.
- W4319869237 hasConceptScore W4319869237C105795698 @default.
- W4319869237 hasConceptScore W4319869237C119857082 @default.
- W4319869237 hasConceptScore W4319869237C12267149 @default.
- W4319869237 hasConceptScore W4319869237C12868164 @default.
- W4319869237 hasConceptScore W4319869237C142724271 @default.
- W4319869237 hasConceptScore W4319869237C145420912 @default.
- W4319869237 hasConceptScore W4319869237C151730666 @default.
- W4319869237 hasConceptScore W4319869237C154945302 @default.
- W4319869237 hasConceptScore W4319869237C15744967 @default.
- W4319869237 hasConceptScore W4319869237C171687745 @default.
- W4319869237 hasConceptScore W4319869237C1862650 @default.
- W4319869237 hasConceptScore W4319869237C2777267654 @default.
- W4319869237 hasConceptScore W4319869237C2780221984 @default.
- W4319869237 hasConceptScore W4319869237C33923547 @default.
- W4319869237 hasConceptScore W4319869237C41008148 @default.
- W4319869237 hasConceptScore W4319869237C71924100 @default.
- W4319869237 hasConceptScore W4319869237C86803240 @default.
- W4319869237 hasLocation W43198692371 @default.
- W4319869237 hasLocation W43198692372 @default.
- W4319869237 hasOpenAccess W4319869237 @default.
- W4319869237 hasPrimaryLocation W43198692371 @default.
- W4319869237 hasRelatedWork W1551773193 @default.
- W4319869237 hasRelatedWork W1996541855 @default.
- W4319869237 hasRelatedWork W2034796172 @default.
- W4319869237 hasRelatedWork W2355927362 @default.
- W4319869237 hasRelatedWork W2748952813 @default.