Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319876085> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4319876085 endingPage "123" @default.
- W4319876085 startingPage "98" @default.
- W4319876085 abstract "The survey on COVID-19 test kits RT-PCR (reverse transcription-polymerase chain reaction) concludes the hit rate of diagnosis and detection is degrading. Manufacturing these RT-PCR kits is very expensive and time-consuming. This work proposed an efficient way for COVID detection using a hybrid convolutional neural network (HCNN) through chest x-rays image analysis. It aids to differentiate non-COVID patient and COVID patients. It makes the medical practitioner to take appropriate treatment and measures. The results outperformed the custom blood and saliva-based RT-PCR test results. A few examinations were carried out over chest X-ray images utilizing ConvNets that produce better accuracy for the recognition of COVID-19. When considering the number of images in the database and the COVID discovery season (testing time = 0.03 s/image), the design reduced the computational expenditure. With mean ROC AUC scores 96.51 & 96.33%, the CNN with minimised convolutional and fully connected layers detects COVID-19 images inside the two-class COVID/Normal and COVID/Pneumonia orders." @default.
- W4319876085 created "2023-02-11" @default.
- W4319876085 creator A5042383078 @default.
- W4319876085 creator A5050146132 @default.
- W4319876085 creator A5057593896 @default.
- W4319876085 creator A5080518980 @default.
- W4319876085 date "2023-01-20" @default.
- W4319876085 modified "2023-10-01" @default.
- W4319876085 title "Hybrid Deep Learning Models for Effective COVID -19 Diagnosis with Chest X-Rays" @default.
- W4319876085 cites W2798251715 @default.
- W4319876085 cites W3007273493 @default.
- W4319876085 cites W3007764760 @default.
- W4319876085 cites W3008627141 @default.
- W4319876085 cites W3008874180 @default.
- W4319876085 cites W3009928129 @default.
- W4319876085 cites W3011149445 @default.
- W4319876085 cites W3013601031 @default.
- W4319876085 cites W3014129273 @default.
- W4319876085 cites W3014924062 @default.
- W4319876085 cites W3017855299 @default.
- W4319876085 cites W3019186020 @default.
- W4319876085 cites W3022842326 @default.
- W4319876085 cites W3024005803 @default.
- W4319876085 cites W3025953162 @default.
- W4319876085 cites W3032510608 @default.
- W4319876085 cites W3033616466 @default.
- W4319876085 cites W3034635466 @default.
- W4319876085 cites W3036638392 @default.
- W4319876085 cites W3039137888 @default.
- W4319876085 cites W3045460727 @default.
- W4319876085 cites W3046023260 @default.
- W4319876085 cites W3046722451 @default.
- W4319876085 cites W3048749423 @default.
- W4319876085 cites W3049070922 @default.
- W4319876085 cites W3089349608 @default.
- W4319876085 cites W3105081694 @default.
- W4319876085 cites W3105777051 @default.
- W4319876085 cites W3125902995 @default.
- W4319876085 cites W3154884208 @default.
- W4319876085 cites W3159001838 @default.
- W4319876085 doi "https://doi.org/10.4018/978-1-6684-6523-3.ch005" @default.
- W4319876085 hasPublicationYear "2023" @default.
- W4319876085 type Work @default.
- W4319876085 citedByCount "0" @default.
- W4319876085 crossrefType "book-chapter" @default.
- W4319876085 hasAuthorship W4319876085A5042383078 @default.
- W4319876085 hasAuthorship W4319876085A5050146132 @default.
- W4319876085 hasAuthorship W4319876085A5057593896 @default.
- W4319876085 hasAuthorship W4319876085A5080518980 @default.
- W4319876085 hasConcept C108583219 @default.
- W4319876085 hasConcept C116675565 @default.
- W4319876085 hasConcept C119857082 @default.
- W4319876085 hasConcept C126322002 @default.
- W4319876085 hasConcept C142724271 @default.
- W4319876085 hasConcept C153180895 @default.
- W4319876085 hasConcept C154945302 @default.
- W4319876085 hasConcept C2777914695 @default.
- W4319876085 hasConcept C2779134260 @default.
- W4319876085 hasConcept C3006700255 @default.
- W4319876085 hasConcept C3007834351 @default.
- W4319876085 hasConcept C3008058167 @default.
- W4319876085 hasConcept C41008148 @default.
- W4319876085 hasConcept C524204448 @default.
- W4319876085 hasConcept C71924100 @default.
- W4319876085 hasConcept C81363708 @default.
- W4319876085 hasConceptScore W4319876085C108583219 @default.
- W4319876085 hasConceptScore W4319876085C116675565 @default.
- W4319876085 hasConceptScore W4319876085C119857082 @default.
- W4319876085 hasConceptScore W4319876085C126322002 @default.
- W4319876085 hasConceptScore W4319876085C142724271 @default.
- W4319876085 hasConceptScore W4319876085C153180895 @default.
- W4319876085 hasConceptScore W4319876085C154945302 @default.
- W4319876085 hasConceptScore W4319876085C2777914695 @default.
- W4319876085 hasConceptScore W4319876085C2779134260 @default.
- W4319876085 hasConceptScore W4319876085C3006700255 @default.
- W4319876085 hasConceptScore W4319876085C3007834351 @default.
- W4319876085 hasConceptScore W4319876085C3008058167 @default.
- W4319876085 hasConceptScore W4319876085C41008148 @default.
- W4319876085 hasConceptScore W4319876085C524204448 @default.
- W4319876085 hasConceptScore W4319876085C71924100 @default.
- W4319876085 hasConceptScore W4319876085C81363708 @default.
- W4319876085 hasLocation W43198760851 @default.
- W4319876085 hasOpenAccess W4319876085 @default.
- W4319876085 hasPrimaryLocation W43198760851 @default.
- W4319876085 hasRelatedWork W3004511262 @default.
- W4319876085 hasRelatedWork W3004802901 @default.
- W4319876085 hasRelatedWork W3004826915 @default.
- W4319876085 hasRelatedWork W3008700721 @default.
- W4319876085 hasRelatedWork W3012050440 @default.
- W4319876085 hasRelatedWork W3012879992 @default.
- W4319876085 hasRelatedWork W3020128117 @default.
- W4319876085 hasRelatedWork W3097796272 @default.
- W4319876085 hasRelatedWork W3107077827 @default.
- W4319876085 hasRelatedWork W4308497568 @default.
- W4319876085 isParatext "false" @default.
- W4319876085 isRetracted "false" @default.
- W4319876085 workType "book-chapter" @default.