Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319879427> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4319879427 abstract "In recent years, deep-learning-based hyperspectral image (HSI) processing and analysis have made significant progress. However, models with high performance require sufficient training samples because scarce labeled samples limit their generalization ability. To solve this problem, we adopt a self-supervised learning strategy and conduct self-training for a neural network model by obtaining different views of the same sample (positive pairs). As a result, the network can learn representative features for classification from unlabeled samples. In addition, to increase the spatial receptive field compared with the use of conventional convolutions, we use the transformer to capture long-distance dependencies for feature enhancement and adequately combine their advantages. Experimental results on two publicly available HSI datasets demonstrate that the proposed method can extract robust features through self-training on unlabeled samples and can be adapted to HSI classification tasks under the small sample conditions." @default.
- W4319879427 created "2023-02-11" @default.
- W4319879427 creator A5009943113 @default.
- W4319879427 creator A5014528965 @default.
- W4319879427 creator A5027117106 @default.
- W4319879427 creator A5056740310 @default.
- W4319879427 creator A5074045214 @default.
- W4319879427 creator A5089040016 @default.
- W4319879427 date "2023-02-10" @default.
- W4319879427 modified "2023-10-18" @default.
- W4319879427 title "Transformer-enhanced convolutional neural network with self-supervised learning for hyperspectral image classification" @default.
- W4319879427 cites W2104269704 @default.
- W4319879427 cites W2114819256 @default.
- W4319879427 cites W2152057649 @default.
- W4319879427 cites W2194775991 @default.
- W4319879427 cites W2614326984 @default.
- W4319879427 cites W2764276316 @default.
- W4319879427 cites W2822065499 @default.
- W4319879427 cites W3123390980 @default.
- W4319879427 cites W3172509117 @default.
- W4319879427 cites W4200394859 @default.
- W4319879427 cites W4240485910 @default.
- W4319879427 cites W4285187901 @default.
- W4319879427 cites W4312846227 @default.
- W4319879427 doi "https://doi.org/10.1117/12.2667329" @default.
- W4319879427 hasPublicationYear "2023" @default.
- W4319879427 type Work @default.
- W4319879427 citedByCount "0" @default.
- W4319879427 crossrefType "proceedings-article" @default.
- W4319879427 hasAuthorship W4319879427A5009943113 @default.
- W4319879427 hasAuthorship W4319879427A5014528965 @default.
- W4319879427 hasAuthorship W4319879427A5027117106 @default.
- W4319879427 hasAuthorship W4319879427A5056740310 @default.
- W4319879427 hasAuthorship W4319879427A5074045214 @default.
- W4319879427 hasAuthorship W4319879427A5089040016 @default.
- W4319879427 hasConcept C108583219 @default.
- W4319879427 hasConcept C115961682 @default.
- W4319879427 hasConcept C119599485 @default.
- W4319879427 hasConcept C119857082 @default.
- W4319879427 hasConcept C127413603 @default.
- W4319879427 hasConcept C134306372 @default.
- W4319879427 hasConcept C153180895 @default.
- W4319879427 hasConcept C154945302 @default.
- W4319879427 hasConcept C159078339 @default.
- W4319879427 hasConcept C165801399 @default.
- W4319879427 hasConcept C177148314 @default.
- W4319879427 hasConcept C185592680 @default.
- W4319879427 hasConcept C198531522 @default.
- W4319879427 hasConcept C33923547 @default.
- W4319879427 hasConcept C41008148 @default.
- W4319879427 hasConcept C43617362 @default.
- W4319879427 hasConcept C50644808 @default.
- W4319879427 hasConcept C52622490 @default.
- W4319879427 hasConcept C66322947 @default.
- W4319879427 hasConcept C75294576 @default.
- W4319879427 hasConcept C81363708 @default.
- W4319879427 hasConceptScore W4319879427C108583219 @default.
- W4319879427 hasConceptScore W4319879427C115961682 @default.
- W4319879427 hasConceptScore W4319879427C119599485 @default.
- W4319879427 hasConceptScore W4319879427C119857082 @default.
- W4319879427 hasConceptScore W4319879427C127413603 @default.
- W4319879427 hasConceptScore W4319879427C134306372 @default.
- W4319879427 hasConceptScore W4319879427C153180895 @default.
- W4319879427 hasConceptScore W4319879427C154945302 @default.
- W4319879427 hasConceptScore W4319879427C159078339 @default.
- W4319879427 hasConceptScore W4319879427C165801399 @default.
- W4319879427 hasConceptScore W4319879427C177148314 @default.
- W4319879427 hasConceptScore W4319879427C185592680 @default.
- W4319879427 hasConceptScore W4319879427C198531522 @default.
- W4319879427 hasConceptScore W4319879427C33923547 @default.
- W4319879427 hasConceptScore W4319879427C41008148 @default.
- W4319879427 hasConceptScore W4319879427C43617362 @default.
- W4319879427 hasConceptScore W4319879427C50644808 @default.
- W4319879427 hasConceptScore W4319879427C52622490 @default.
- W4319879427 hasConceptScore W4319879427C66322947 @default.
- W4319879427 hasConceptScore W4319879427C75294576 @default.
- W4319879427 hasConceptScore W4319879427C81363708 @default.
- W4319879427 hasLocation W43198794271 @default.
- W4319879427 hasOpenAccess W4319879427 @default.
- W4319879427 hasPrimaryLocation W43198794271 @default.
- W4319879427 hasRelatedWork W2059299633 @default.
- W4319879427 hasRelatedWork W2406522397 @default.
- W4319879427 hasRelatedWork W2732542196 @default.
- W4319879427 hasRelatedWork W2972973180 @default.
- W4319879427 hasRelatedWork W2998169797 @default.
- W4319879427 hasRelatedWork W3011074480 @default.
- W4319879427 hasRelatedWork W3012145520 @default.
- W4319879427 hasRelatedWork W3026800724 @default.
- W4319879427 hasRelatedWork W3081496756 @default.
- W4319879427 hasRelatedWork W4311257506 @default.
- W4319879427 isParatext "false" @default.
- W4319879427 isRetracted "false" @default.
- W4319879427 workType "article" @default.