Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319880071> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4319880071 endingPage "542a" @default.
- W4319880071 startingPage "542a" @default.
- W4319880071 abstract "An increasing number of protein structures are determined by cryo-electron microscopy (cryo-EM) as cryo-EM has become one of the most important methods to determine structures. On the other hand, it has been noticed that errors occur in the model building process from cryo-EM maps, probably more frequently than one might think, particularly when the map resolution is not very high. Thus, establishing quality assessment methods has become a crucial and urgent task for biomolecular structure determination with cryo-EM. We have recently developed a quality assessment method to detect protein structural model outliers using machine learning techniques. Our method, called DAQ (Deep-learning-based Amino acid-wise model Quality) score, uses deep neural network to capture local density features of amino acids and atoms in proteins and assesses the likelihood that modeled residues in a structural model is correct (Terashi et al., Nature Methods, 2022). DAQ is also able to detect not only errors in conformations but also shifts in sequence assignment to otherwise correct main-chain conformations, which is often not easy to detect by checking density fitting. Here, we performed a PDB-scale model analysis by DAQ. We applied DAQ to around 10,000 protein structure models in PDB that were derived from cryo-EM maps deposited in Electron Microscopy Data Bank (EMDB). We report the tendency of common errors made in the models through the large-scale analysis. When authors deposited updated structure models to PDB over an initial model, we see clear improvement of DAQ score in the updated version of the model. A common type of errors observed include sequence shifts along alpha helices. Model assessment results with DAQ are made available in a database (https://daqdb.bio.purdue.edu/), where models can be searched by PDB IDs, EMDB IDs and keywords." @default.
- W4319880071 created "2023-02-11" @default.
- W4319880071 creator A5021468317 @default.
- W4319880071 creator A5058010200 @default.
- W4319880071 creator A5062293219 @default.
- W4319880071 creator A5067994741 @default.
- W4319880071 date "2023-02-01" @default.
- W4319880071 modified "2023-10-16" @default.
- W4319880071 title "DAQ-score database: Deep-learning based quality estimation of cryo-EM derived protein models" @default.
- W4319880071 doi "https://doi.org/10.1016/j.bpj.2022.11.2873" @default.
- W4319880071 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36784808" @default.
- W4319880071 hasPublicationYear "2023" @default.
- W4319880071 type Work @default.
- W4319880071 citedByCount "0" @default.
- W4319880071 crossrefType "journal-article" @default.
- W4319880071 hasAuthorship W4319880071A5021468317 @default.
- W4319880071 hasAuthorship W4319880071A5058010200 @default.
- W4319880071 hasAuthorship W4319880071A5062293219 @default.
- W4319880071 hasAuthorship W4319880071A5067994741 @default.
- W4319880071 hasConcept C108583219 @default.
- W4319880071 hasConcept C111919701 @default.
- W4319880071 hasConcept C119145174 @default.
- W4319880071 hasConcept C119857082 @default.
- W4319880071 hasConcept C124101348 @default.
- W4319880071 hasConcept C153180895 @default.
- W4319880071 hasConcept C154945302 @default.
- W4319880071 hasConcept C163985040 @default.
- W4319880071 hasConcept C185592680 @default.
- W4319880071 hasConcept C20702342 @default.
- W4319880071 hasConcept C41008148 @default.
- W4319880071 hasConcept C47701112 @default.
- W4319880071 hasConcept C50644808 @default.
- W4319880071 hasConcept C55493867 @default.
- W4319880071 hasConcept C65556437 @default.
- W4319880071 hasConcept C79337645 @default.
- W4319880071 hasConceptScore W4319880071C108583219 @default.
- W4319880071 hasConceptScore W4319880071C111919701 @default.
- W4319880071 hasConceptScore W4319880071C119145174 @default.
- W4319880071 hasConceptScore W4319880071C119857082 @default.
- W4319880071 hasConceptScore W4319880071C124101348 @default.
- W4319880071 hasConceptScore W4319880071C153180895 @default.
- W4319880071 hasConceptScore W4319880071C154945302 @default.
- W4319880071 hasConceptScore W4319880071C163985040 @default.
- W4319880071 hasConceptScore W4319880071C185592680 @default.
- W4319880071 hasConceptScore W4319880071C20702342 @default.
- W4319880071 hasConceptScore W4319880071C41008148 @default.
- W4319880071 hasConceptScore W4319880071C47701112 @default.
- W4319880071 hasConceptScore W4319880071C50644808 @default.
- W4319880071 hasConceptScore W4319880071C55493867 @default.
- W4319880071 hasConceptScore W4319880071C65556437 @default.
- W4319880071 hasConceptScore W4319880071C79337645 @default.
- W4319880071 hasIssue "3" @default.
- W4319880071 hasLocation W43198800711 @default.
- W4319880071 hasLocation W43198800712 @default.
- W4319880071 hasOpenAccess W4319880071 @default.
- W4319880071 hasPrimaryLocation W43198800711 @default.
- W4319880071 hasRelatedWork W2090630809 @default.
- W4319880071 hasRelatedWork W3014300295 @default.
- W4319880071 hasRelatedWork W3126783617 @default.
- W4319880071 hasRelatedWork W4223943233 @default.
- W4319880071 hasRelatedWork W4225161397 @default.
- W4319880071 hasRelatedWork W4312200629 @default.
- W4319880071 hasRelatedWork W4360585206 @default.
- W4319880071 hasRelatedWork W4364306694 @default.
- W4319880071 hasRelatedWork W4380075502 @default.
- W4319880071 hasRelatedWork W4380086463 @default.
- W4319880071 hasVolume "122" @default.
- W4319880071 isParatext "false" @default.
- W4319880071 isRetracted "false" @default.
- W4319880071 workType "article" @default.