Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319918974> ?p ?o ?g. }
- W4319918974 endingPage "162066" @default.
- W4319918974 startingPage "162066" @default.
- W4319918974 abstract "Flood susceptibility maps are useful tool for planners and emergency management professionals in the early warning and mitigation stages of floods. In this study, Sentinel-1 dB radar images, which provide Synthetic-Aperture Radar (SAR) data were used to delineate flooded and non-flooded locations. 12 input parameters, including elevation, lithology, drainage density, rainfall, Normalized Difference Vegetation Index (NDVI), curvature, ground slope, Stream Power Index (SPI), Topographic Wetness Index (TWI), soil, Land Use Land Cover (LULC), and distance from the river, were selected for model development. The importance of each input parameter on flood occurrences was assessed via the Mutual Information (MI) technique. Several machine learning models, including Radial Basis Function (RBF), and three hybrid models of Bagging (BA-RBF), Random Committee (RC-RBF), and Random Subspace (RSS-RBF), were developed to delineate flood susceptibility areas at Goorganrood watershed, Iran. The performance of each model was evaluated using several error indicators, including correlation coefficient (r), Nash Sutcliffe Efficiency (NSE), Mean Absolute Error (MSE), Root Mean Square Error (RMSE), and the Area Under the Receiver Operating Characteristic (ROC) Curve (AUC). The results showed that the hybrid techniques enhanced the modeling performance of the standalone model, and generally, all hybrid models are more accurate than the standalone model. Although all developed models have performed well, RC-RBF outperforms all of them (AUC = 0.997), followed by BA-RBF (AUC = 0.996), RSS-RBF (AUC = 0.992), and RBF (AUC = 0.975). Generally, about 12 % of the study area has high and very high susceptibility to future flood occurrences." @default.
- W4319918974 created "2023-02-11" @default.
- W4319918974 creator A5021141112 @default.
- W4319918974 creator A5023927393 @default.
- W4319918974 creator A5033592648 @default.
- W4319918974 creator A5040698421 @default.
- W4319918974 creator A5048349794 @default.
- W4319918974 creator A5067254118 @default.
- W4319918974 creator A5083514118 @default.
- W4319918974 date "2023-05-01" @default.
- W4319918974 modified "2023-10-17" @default.
- W4319918974 title "Enhancing flood susceptibility modeling using multi-temporal SAR images, CHIRPS data, and hybrid machine learning algorithms" @default.
- W4319918974 cites W1865260393 @default.
- W4319918974 cites W1971984535 @default.
- W4319918974 cites W1981300076 @default.
- W4319918974 cites W1985479415 @default.
- W4319918974 cites W1985993867 @default.
- W4319918974 cites W2004716796 @default.
- W4319918974 cites W2024520223 @default.
- W4319918974 cites W2031489987 @default.
- W4319918974 cites W2033904036 @default.
- W4319918974 cites W2065642067 @default.
- W4319918974 cites W2083029259 @default.
- W4319918974 cites W2085674931 @default.
- W4319918974 cites W2090137585 @default.
- W4319918974 cites W2113242816 @default.
- W4319918974 cites W2155573868 @default.
- W4319918974 cites W2156808278 @default.
- W4319918974 cites W2167594433 @default.
- W4319918974 cites W2344417971 @default.
- W4319918974 cites W2423094380 @default.
- W4319918974 cites W2470499131 @default.
- W4319918974 cites W2488205021 @default.
- W4319918974 cites W2511517663 @default.
- W4319918974 cites W2519746072 @default.
- W4319918974 cites W2526952648 @default.
- W4319918974 cites W2587847980 @default.
- W4319918974 cites W2606804832 @default.
- W4319918974 cites W2747000343 @default.
- W4319918974 cites W2766228856 @default.
- W4319918974 cites W2789758093 @default.
- W4319918974 cites W2791328889 @default.
- W4319918974 cites W2796299618 @default.
- W4319918974 cites W2799581641 @default.
- W4319918974 cites W2800522401 @default.
- W4319918974 cites W2882999202 @default.
- W4319918974 cites W2891007421 @default.
- W4319918974 cites W2891625068 @default.
- W4319918974 cites W2894452139 @default.
- W4319918974 cites W2901609278 @default.
- W4319918974 cites W2911893501 @default.
- W4319918974 cites W2919134738 @default.
- W4319918974 cites W2927539500 @default.
- W4319918974 cites W2938393691 @default.
- W4319918974 cites W2939737347 @default.
- W4319918974 cites W2947721686 @default.
- W4319918974 cites W2948240747 @default.
- W4319918974 cites W2950469931 @default.
- W4319918974 cites W2956021635 @default.
- W4319918974 cites W2965136767 @default.
- W4319918974 cites W2971461196 @default.
- W4319918974 cites W2973071571 @default.
- W4319918974 cites W2981210218 @default.
- W4319918974 cites W2990513038 @default.
- W4319918974 cites W2996701347 @default.
- W4319918974 cites W3007162143 @default.
- W4319918974 cites W3018952706 @default.
- W4319918974 cites W3019014161 @default.
- W4319918974 cites W3038008518 @default.
- W4319918974 cites W3038730201 @default.
- W4319918974 cites W3044360060 @default.
- W4319918974 cites W3044390871 @default.
- W4319918974 cites W3048285196 @default.
- W4319918974 cites W3048827138 @default.
- W4319918974 cites W3082355135 @default.
- W4319918974 cites W3083424552 @default.
- W4319918974 cites W3087236291 @default.
- W4319918974 cites W3088083099 @default.
- W4319918974 cites W3089288210 @default.
- W4319918974 cites W3093573927 @default.
- W4319918974 cites W3096638284 @default.
- W4319918974 cites W3097613160 @default.
- W4319918974 cites W3099487920 @default.
- W4319918974 cites W3133418438 @default.
- W4319918974 cites W3151640016 @default.
- W4319918974 cites W3159742334 @default.
- W4319918974 cites W3162382803 @default.
- W4319918974 cites W3164693126 @default.
- W4319918974 cites W3192038517 @default.
- W4319918974 cites W4212883601 @default.
- W4319918974 cites W4289236186 @default.
- W4319918974 doi "https://doi.org/10.1016/j.scitotenv.2023.162066" @default.
- W4319918974 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36773901" @default.
- W4319918974 hasPublicationYear "2023" @default.
- W4319918974 type Work @default.
- W4319918974 citedByCount "8" @default.
- W4319918974 countsByYear W43199189742023 @default.
- W4319918974 crossrefType "journal-article" @default.