Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319922997> ?p ?o ?g. }
- W4319922997 endingPage "128" @default.
- W4319922997 startingPage "114" @default.
- W4319922997 abstract "Event causalities organize events into a graph according to causal logics, which assists humans in decision making by causal reasoning among events. Despite many efforts to identify event causalities, most of them assume that only one causality exists in a sentence or causalities only occur in adjacent sentences, leading to the incapability of detecting multiple causalities or document-level causalities. In this paper, we propose a novel model for document-level event causality identification named DocECI. We define two heterogeneous document graphs, namely text structure graph and mention relation graph, and encode them with relational graph convolutional networks, which gradually aggregate the information of multi-granular nodes in a cascade manner and capture the causality patterns. Experiments on a benchmark dataset show that DocECI outperforms existing models by a significant margin. Moreover, a new experiment is conducted on causality direction identification, which is overlooked by existing models." @default.
- W4319922997 created "2023-02-11" @default.
- W4319922997 creator A5006363585 @default.
- W4319922997 creator A5023363049 @default.
- W4319922997 creator A5042564886 @default.
- W4319922997 creator A5062378128 @default.
- W4319922997 creator A5082530210 @default.
- W4319922997 date "2023-01-01" @default.
- W4319922997 modified "2023-09-26" @default.
- W4319922997 title "Dual Graph Convolutional Networks for Document-Level Event Causality Identification" @default.
- W4319922997 cites W1991018417 @default.
- W4319922997 cites W1991145427 @default.
- W4319922997 cites W2115178013 @default.
- W4319922997 cites W2142321231 @default.
- W4319922997 cites W2145870355 @default.
- W4319922997 cites W2180312923 @default.
- W4319922997 cites W2517194566 @default.
- W4319922997 cites W2604314403 @default.
- W4319922997 cites W2604792945 @default.
- W4319922997 cites W2741237963 @default.
- W4319922997 cites W2741389109 @default.
- W4319922997 cites W2752223904 @default.
- W4319922997 cites W2798865369 @default.
- W4319922997 cites W2885051956 @default.
- W4319922997 cites W2889363461 @default.
- W4319922997 cites W2892094955 @default.
- W4319922997 cites W2937815589 @default.
- W4319922997 cites W2946361563 @default.
- W4319922997 cites W2962859618 @default.
- W4319922997 cites W2963862093 @default.
- W4319922997 cites W2964080504 @default.
- W4319922997 cites W2971221499 @default.
- W4319922997 cites W2984452801 @default.
- W4319922997 cites W3021184789 @default.
- W4319922997 cites W3021224558 @default.
- W4319922997 cites W3034268502 @default.
- W4319922997 cites W3035053871 @default.
- W4319922997 cites W3093891978 @default.
- W4319922997 cites W3096859383 @default.
- W4319922997 cites W3101327207 @default.
- W4319922997 cites W3113440918 @default.
- W4319922997 cites W3116218298 @default.
- W4319922997 cites W3194757865 @default.
- W4319922997 doi "https://doi.org/10.1007/978-3-031-25198-6_9" @default.
- W4319922997 hasPublicationYear "2023" @default.
- W4319922997 type Work @default.
- W4319922997 citedByCount "0" @default.
- W4319922997 crossrefType "book-chapter" @default.
- W4319922997 hasAuthorship W4319922997A5006363585 @default.
- W4319922997 hasAuthorship W4319922997A5023363049 @default.
- W4319922997 hasAuthorship W4319922997A5042564886 @default.
- W4319922997 hasAuthorship W4319922997A5062378128 @default.
- W4319922997 hasAuthorship W4319922997A5082530210 @default.
- W4319922997 hasConcept C104317684 @default.
- W4319922997 hasConcept C116834253 @default.
- W4319922997 hasConcept C121332964 @default.
- W4319922997 hasConcept C124101348 @default.
- W4319922997 hasConcept C124952713 @default.
- W4319922997 hasConcept C132525143 @default.
- W4319922997 hasConcept C142362112 @default.
- W4319922997 hasConcept C154945302 @default.
- W4319922997 hasConcept C159985019 @default.
- W4319922997 hasConcept C185592680 @default.
- W4319922997 hasConcept C192562407 @default.
- W4319922997 hasConcept C204321447 @default.
- W4319922997 hasConcept C2777530160 @default.
- W4319922997 hasConcept C2779662365 @default.
- W4319922997 hasConcept C2780980858 @default.
- W4319922997 hasConcept C41008148 @default.
- W4319922997 hasConcept C4679612 @default.
- W4319922997 hasConcept C55493867 @default.
- W4319922997 hasConcept C59822182 @default.
- W4319922997 hasConcept C62520636 @default.
- W4319922997 hasConcept C64357122 @default.
- W4319922997 hasConcept C66746571 @default.
- W4319922997 hasConcept C80444323 @default.
- W4319922997 hasConcept C86803240 @default.
- W4319922997 hasConceptScore W4319922997C104317684 @default.
- W4319922997 hasConceptScore W4319922997C116834253 @default.
- W4319922997 hasConceptScore W4319922997C121332964 @default.
- W4319922997 hasConceptScore W4319922997C124101348 @default.
- W4319922997 hasConceptScore W4319922997C124952713 @default.
- W4319922997 hasConceptScore W4319922997C132525143 @default.
- W4319922997 hasConceptScore W4319922997C142362112 @default.
- W4319922997 hasConceptScore W4319922997C154945302 @default.
- W4319922997 hasConceptScore W4319922997C159985019 @default.
- W4319922997 hasConceptScore W4319922997C185592680 @default.
- W4319922997 hasConceptScore W4319922997C192562407 @default.
- W4319922997 hasConceptScore W4319922997C204321447 @default.
- W4319922997 hasConceptScore W4319922997C2777530160 @default.
- W4319922997 hasConceptScore W4319922997C2779662365 @default.
- W4319922997 hasConceptScore W4319922997C2780980858 @default.
- W4319922997 hasConceptScore W4319922997C41008148 @default.
- W4319922997 hasConceptScore W4319922997C4679612 @default.
- W4319922997 hasConceptScore W4319922997C55493867 @default.
- W4319922997 hasConceptScore W4319922997C59822182 @default.
- W4319922997 hasConceptScore W4319922997C62520636 @default.
- W4319922997 hasConceptScore W4319922997C64357122 @default.