Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319924621> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4319924621 endingPage "1965" @default.
- W4319924621 startingPage "1965" @default.
- W4319924621 abstract "Cloud computing (CC) benefits and opportunities are among the fastest growing technologies in the computer industry. Cloud computing's challenges include resource allocation, security, quality of service, availability, privacy, data management, performance compatibility, and fault tolerance. Fault tolerance (FT) refers to a system's ability to continue performing its intended task in the presence of defects. Fault-tolerance challenges include heterogeneity and a lack of standards, the need for automation, cloud downtime reliability, consideration for recovery point objects, recovery time objects, and cloud workload. The proposed research includes machine learning (ML) algorithms such as naïve Bayes (NB), library support vector machine (LibSVM), multinomial logistic regression (MLR), sequential minimal optimization (SMO), K-nearest neighbor (KNN), and random forest (RF) as well as a fault-tolerance method known as delta-checkpointing to achieve higher accuracy, lesser fault prediction error, and reliability. Furthermore, the secondary data were collected from the homonymous, experimental high-performance computing (HPC) system at the Swiss Federal Institute of Technology (ETH), Zurich, and the primary data were generated using virtual machines (VMs) to select the best machine learning classifier. In this article, the secondary and primary data were divided into two split ratios of 80/20 and 70/30, respectively, and cross-validation (5-fold) was used to identify more accuracy and less prediction of faults in terms of true, false, repair, and failure of virtual machines. Secondary data results show that naïve Bayes performed exceptionally well on CPU-Mem mono and multi blocks, and sequential minimal optimization performed very well on HDD mono and multi blocks in terms of accuracy and fault prediction. In the case of greater accuracy and less fault prediction, primary data results revealed that random forest performed very well in terms of accuracy and fault prediction but not with good time complexity. Sequential minimal optimization has good time complexity with minor differences in random forest accuracy and fault prediction. We decided to modify sequential minimal optimization. Finally, the modified sequential minimal optimization (MSMO) algorithm with the fault-tolerance delta-checkpointing (D-CP) method is proposed to improve accuracy, fault prediction error, and reliability in cloud computing." @default.
- W4319924621 created "2023-02-11" @default.
- W4319924621 creator A5017259692 @default.
- W4319924621 creator A5078925693 @default.
- W4319924621 creator A5080030634 @default.
- W4319924621 date "2023-02-09" @default.
- W4319924621 modified "2023-10-17" @default.
- W4319924621 title "Achieving Reliability in Cloud Computing by a Novel Hybrid Approach" @default.
- W4319924621 cites W2153635508 @default.
- W4319924621 cites W2252902999 @default.
- W4319924621 cites W2344113890 @default.
- W4319924621 cites W2474931148 @default.
- W4319924621 cites W2529398857 @default.
- W4319924621 cites W2551328538 @default.
- W4319924621 cites W2596088606 @default.
- W4319924621 cites W2751342368 @default.
- W4319924621 cites W2766078833 @default.
- W4319924621 cites W2779564163 @default.
- W4319924621 cites W2790957846 @default.
- W4319924621 cites W2811009742 @default.
- W4319924621 cites W2940916020 @default.
- W4319924621 cites W2950911818 @default.
- W4319924621 cites W2957007523 @default.
- W4319924621 cites W2990346675 @default.
- W4319924621 cites W2991056320 @default.
- W4319924621 cites W3028860567 @default.
- W4319924621 cites W3042975239 @default.
- W4319924621 cites W3080303574 @default.
- W4319924621 cites W3119368117 @default.
- W4319924621 cites W3135028703 @default.
- W4319924621 cites W3153450967 @default.
- W4319924621 cites W4223475515 @default.
- W4319924621 cites W4230862995 @default.
- W4319924621 cites W4234645543 @default.
- W4319924621 cites W4285794683 @default.
- W4319924621 doi "https://doi.org/10.3390/s23041965" @default.
- W4319924621 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36850563" @default.
- W4319924621 hasPublicationYear "2023" @default.
- W4319924621 type Work @default.
- W4319924621 citedByCount "2" @default.
- W4319924621 crossrefType "journal-article" @default.
- W4319924621 hasAuthorship W4319924621A5017259692 @default.
- W4319924621 hasAuthorship W4319924621A5078925693 @default.
- W4319924621 hasAuthorship W4319924621A5080030634 @default.
- W4319924621 hasBestOaLocation W43199246211 @default.
- W4319924621 hasConcept C111919701 @default.
- W4319924621 hasConcept C11413529 @default.
- W4319924621 hasConcept C119857082 @default.
- W4319924621 hasConcept C120314980 @default.
- W4319924621 hasConcept C12267149 @default.
- W4319924621 hasConcept C124101348 @default.
- W4319924621 hasConcept C154945302 @default.
- W4319924621 hasConcept C169258074 @default.
- W4319924621 hasConcept C25344961 @default.
- W4319924621 hasConcept C2778476105 @default.
- W4319924621 hasConcept C41008148 @default.
- W4319924621 hasConcept C52001869 @default.
- W4319924621 hasConcept C63540848 @default.
- W4319924621 hasConcept C79974875 @default.
- W4319924621 hasConceptScore W4319924621C111919701 @default.
- W4319924621 hasConceptScore W4319924621C11413529 @default.
- W4319924621 hasConceptScore W4319924621C119857082 @default.
- W4319924621 hasConceptScore W4319924621C120314980 @default.
- W4319924621 hasConceptScore W4319924621C12267149 @default.
- W4319924621 hasConceptScore W4319924621C124101348 @default.
- W4319924621 hasConceptScore W4319924621C154945302 @default.
- W4319924621 hasConceptScore W4319924621C169258074 @default.
- W4319924621 hasConceptScore W4319924621C25344961 @default.
- W4319924621 hasConceptScore W4319924621C2778476105 @default.
- W4319924621 hasConceptScore W4319924621C41008148 @default.
- W4319924621 hasConceptScore W4319924621C52001869 @default.
- W4319924621 hasConceptScore W4319924621C63540848 @default.
- W4319924621 hasConceptScore W4319924621C79974875 @default.
- W4319924621 hasIssue "4" @default.
- W4319924621 hasLocation W43199246211 @default.
- W4319924621 hasLocation W43199246212 @default.
- W4319924621 hasLocation W43199246213 @default.
- W4319924621 hasLocation W43199246214 @default.
- W4319924621 hasOpenAccess W4319924621 @default.
- W4319924621 hasPrimaryLocation W43199246211 @default.
- W4319924621 hasRelatedWork W2985924212 @default.
- W4319924621 hasRelatedWork W3108448481 @default.
- W4319924621 hasRelatedWork W3168994312 @default.
- W4319924621 hasRelatedWork W3195168932 @default.
- W4319924621 hasRelatedWork W4221021152 @default.
- W4319924621 hasRelatedWork W4285225238 @default.
- W4319924621 hasRelatedWork W4285343791 @default.
- W4319924621 hasRelatedWork W4377964522 @default.
- W4319924621 hasRelatedWork W4381235817 @default.
- W4319924621 hasRelatedWork W4384345534 @default.
- W4319924621 hasVolume "23" @default.
- W4319924621 isParatext "false" @default.
- W4319924621 isRetracted "false" @default.
- W4319924621 workType "article" @default.