Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319925029> ?p ?o ?g. }
- W4319925029 endingPage "2272" @default.
- W4319925029 startingPage "2272" @default.
- W4319925029 abstract "This study aims to develop a better Financial Statement Fraud (FSF) detection model by utilizing data from publicly available financial statements of firms in the MENA region. We develop an FSF model using a powerful ensemble technique, the XGBoost (eXtreme Gradient Boosting) algorithm, that helps to identify fraud in a set of sample companies drawn from the Middle East and North Africa (MENA) region. The issue of class imbalance in the dataset is addressed by applying the Synthetic Minority Oversampling Technique (SMOTE) algorithm. We use different Machine Learning techniques in Python to predict FSF, and our empirical findings show that the XGBoost algorithm outperformed the other algorithms in this study, namely, Logistic Regression (LR), Decision Tree (DT), Support Vector Machine (SVM), AdaBoost, and Random Forest (RF). We then optimize the XGBoost algorithm to obtain the best result, with a final accuracy of 96.05% in the detection of FSF." @default.
- W4319925029 created "2023-02-11" @default.
- W4319925029 creator A5029706568 @default.
- W4319925029 creator A5039043254 @default.
- W4319925029 creator A5043940209 @default.
- W4319925029 creator A5051533062 @default.
- W4319925029 date "2023-02-10" @default.
- W4319925029 modified "2023-10-03" @default.
- W4319925029 title "A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique" @default.
- W4319925029 cites W1120269880 @default.
- W4319925029 cites W1482257347 @default.
- W4319925029 cites W1542378767 @default.
- W4319925029 cites W1818008271 @default.
- W4319925029 cites W1909847116 @default.
- W4319925029 cites W1930624869 @default.
- W4319925029 cites W1968433094 @default.
- W4319925029 cites W1988790447 @default.
- W4319925029 cites W2080379544 @default.
- W4319925029 cites W2130508343 @default.
- W4319925029 cites W2132966115 @default.
- W4319925029 cites W2142827986 @default.
- W4319925029 cites W2148143831 @default.
- W4319925029 cites W2149535930 @default.
- W4319925029 cites W2150473995 @default.
- W4319925029 cites W2153262820 @default.
- W4319925029 cites W2158339117 @default.
- W4319925029 cites W2167332641 @default.
- W4319925029 cites W2518774129 @default.
- W4319925029 cites W2547202110 @default.
- W4319925029 cites W2563103174 @default.
- W4319925029 cites W2610250061 @default.
- W4319925029 cites W2619227625 @default.
- W4319925029 cites W2752032793 @default.
- W4319925029 cites W2782725862 @default.
- W4319925029 cites W2785637175 @default.
- W4319925029 cites W2811470041 @default.
- W4319925029 cites W2910262972 @default.
- W4319925029 cites W2921167087 @default.
- W4319925029 cites W2927428734 @default.
- W4319925029 cites W2963613787 @default.
- W4319925029 cites W3009521904 @default.
- W4319925029 cites W3035269684 @default.
- W4319925029 cites W3092415316 @default.
- W4319925029 cites W3102476541 @default.
- W4319925029 cites W3118839411 @default.
- W4319925029 cites W3122893601 @default.
- W4319925029 cites W3125433491 @default.
- W4319925029 cites W3126457608 @default.
- W4319925029 cites W3135651197 @default.
- W4319925029 cites W3138861928 @default.
- W4319925029 cites W3154534425 @default.
- W4319925029 cites W3164316044 @default.
- W4319925029 cites W3206280177 @default.
- W4319925029 cites W3207974629 @default.
- W4319925029 cites W4212968553 @default.
- W4319925029 cites W4225858616 @default.
- W4319925029 cites W4239510810 @default.
- W4319925029 cites W4282025584 @default.
- W4319925029 cites W4297348065 @default.
- W4319925029 cites W4307549181 @default.
- W4319925029 cites W4318776773 @default.
- W4319925029 cites W4319080633 @default.
- W4319925029 doi "https://doi.org/10.3390/app13042272" @default.
- W4319925029 hasPublicationYear "2023" @default.
- W4319925029 type Work @default.
- W4319925029 citedByCount "4" @default.
- W4319925029 countsByYear W43199250292023 @default.
- W4319925029 crossrefType "journal-article" @default.
- W4319925029 hasAuthorship W4319925029A5029706568 @default.
- W4319925029 hasAuthorship W4319925029A5039043254 @default.
- W4319925029 hasAuthorship W4319925029A5043940209 @default.
- W4319925029 hasAuthorship W4319925029A5051533062 @default.
- W4319925029 hasBestOaLocation W43199250291 @default.
- W4319925029 hasConcept C10138342 @default.
- W4319925029 hasConcept C111919701 @default.
- W4319925029 hasConcept C119857082 @default.
- W4319925029 hasConcept C12267149 @default.
- W4319925029 hasConcept C124101348 @default.
- W4319925029 hasConcept C141404830 @default.
- W4319925029 hasConcept C154945302 @default.
- W4319925029 hasConcept C162324750 @default.
- W4319925029 hasConcept C169258074 @default.
- W4319925029 hasConcept C197323446 @default.
- W4319925029 hasConcept C2776257435 @default.
- W4319925029 hasConcept C31258907 @default.
- W4319925029 hasConcept C41008148 @default.
- W4319925029 hasConcept C46686674 @default.
- W4319925029 hasConcept C519991488 @default.
- W4319925029 hasConcept C84525736 @default.
- W4319925029 hasConceptScore W4319925029C10138342 @default.
- W4319925029 hasConceptScore W4319925029C111919701 @default.
- W4319925029 hasConceptScore W4319925029C119857082 @default.
- W4319925029 hasConceptScore W4319925029C12267149 @default.
- W4319925029 hasConceptScore W4319925029C124101348 @default.
- W4319925029 hasConceptScore W4319925029C141404830 @default.
- W4319925029 hasConceptScore W4319925029C154945302 @default.
- W4319925029 hasConceptScore W4319925029C162324750 @default.
- W4319925029 hasConceptScore W4319925029C169258074 @default.