Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319928802> ?p ?o ?g. }
- W4319928802 abstract "Precise identification of cancer cells in patient samples is essential for accurate diagnosis and clinical monitoring but has been a significant challenge in machine learning approaches for cancer precision medicine. In most scenarios, training data are only available with disease annotation at the subject or sample level. Traditional approaches separate the classification process into multiple steps that are optimized independently. Recent methods either focus on predicting sample-level diagnosis without identifying individual pathologic cells or are less effective for identifying heterogeneous cancer cell phenotypes.We developed a generalized end-to-end differentiable model, the Cell Scoring Neural Network (CSNN), which takes the available sample-level training data and predicts both the diagnosis of the testing samples and the identity of the diagnostic cells in the sample, simultaneously. The cell-level density differences between samples are linked to the sample diagnosis, which allows the probabilities of individual cells being diagnostic to be calculated using backpropagation. We applied CSNN to two independent clinical flow cytometry datasets for leukemia diagnosis. In both qualitative and quantitative assessments, CSNN outperformed preexisting neural network modeling approaches for both cancer diagnosis and cell-level classification. Post hoc decision trees and 2D dot plots were generated for interpretation of the identified cancer cells, showing that the identified cell phenotypes match the cancer endotypes observed clinically in patient cohorts. Independent data clustering analysis confirmed the identified cancer cell populations.The source code of CSNN and datasets used in the experiments are publicly available on GitHub and FlowRepository.Edgar E. Robles: roblesee@uci.edu and Yu Qian: mqian@jcvi.org.Supplementary data are available on GitHub and at Bioinformatics online." @default.
- W4319928802 created "2023-02-11" @default.
- W4319928802 creator A5001656704 @default.
- W4319928802 creator A5034262562 @default.
- W4319928802 creator A5055944639 @default.
- W4319928802 creator A5077460655 @default.
- W4319928802 creator A5079751653 @default.
- W4319928802 creator A5081098041 @default.
- W4319928802 creator A5087644608 @default.
- W4319928802 creator A5090836249 @default.
- W4319928802 date "2023-02-10" @default.
- W4319928802 modified "2023-10-14" @default.
- W4319928802 title "A cell-level discriminative neural network model for diagnosis of blood cancers" @default.
- W4319928802 cites W1480376833 @default.
- W4319928802 cites W1516237833 @default.
- W4319928802 cites W1631320694 @default.
- W4319928802 cites W1712068381 @default.
- W4319928802 cites W1976151361 @default.
- W4319928802 cites W1980081406 @default.
- W4319928802 cites W1982074959 @default.
- W4319928802 cites W1982729887 @default.
- W4319928802 cites W1989838792 @default.
- W4319928802 cites W1993835819 @default.
- W4319928802 cites W2029264833 @default.
- W4319928802 cites W2036515432 @default.
- W4319928802 cites W2041520207 @default.
- W4319928802 cites W2042829929 @default.
- W4319928802 cites W2048395646 @default.
- W4319928802 cites W2060415116 @default.
- W4319928802 cites W2060886231 @default.
- W4319928802 cites W2073256527 @default.
- W4319928802 cites W2082016821 @default.
- W4319928802 cites W2087932775 @default.
- W4319928802 cites W2095280237 @default.
- W4319928802 cites W2095664313 @default.
- W4319928802 cites W2099268808 @default.
- W4319928802 cites W2099760648 @default.
- W4319928802 cites W2101038583 @default.
- W4319928802 cites W2120366344 @default.
- W4319928802 cites W2124159210 @default.
- W4319928802 cites W2138839185 @default.
- W4319928802 cites W2143451223 @default.
- W4319928802 cites W2155573955 @default.
- W4319928802 cites W2156049613 @default.
- W4319928802 cites W2159917050 @default.
- W4319928802 cites W2346039638 @default.
- W4319928802 cites W2358421111 @default.
- W4319928802 cites W2461073387 @default.
- W4319928802 cites W2612538354 @default.
- W4319928802 cites W2761095749 @default.
- W4319928802 cites W2761645446 @default.
- W4319928802 cites W2767607422 @default.
- W4319928802 cites W2788915007 @default.
- W4319928802 cites W2801193972 @default.
- W4319928802 cites W2886484539 @default.
- W4319928802 cites W2896930435 @default.
- W4319928802 cites W2950814274 @default.
- W4319928802 cites W2952775948 @default.
- W4319928802 cites W2953193207 @default.
- W4319928802 cites W2986044976 @default.
- W4319928802 cites W3049397729 @default.
- W4319928802 cites W3080263813 @default.
- W4319928802 cites W3205926610 @default.
- W4319928802 cites W3210362879 @default.
- W4319928802 cites W4205437613 @default.
- W4319928802 cites W4248463836 @default.
- W4319928802 cites W4280647382 @default.
- W4319928802 cites W4386009263 @default.
- W4319928802 doi "https://doi.org/10.1101/2023.02.07.23285606" @default.
- W4319928802 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36798344" @default.
- W4319928802 hasPublicationYear "2023" @default.
- W4319928802 type Work @default.
- W4319928802 citedByCount "0" @default.
- W4319928802 crossrefType "posted-content" @default.
- W4319928802 hasAuthorship W4319928802A5001656704 @default.
- W4319928802 hasAuthorship W4319928802A5034262562 @default.
- W4319928802 hasAuthorship W4319928802A5055944639 @default.
- W4319928802 hasAuthorship W4319928802A5077460655 @default.
- W4319928802 hasAuthorship W4319928802A5079751653 @default.
- W4319928802 hasAuthorship W4319928802A5081098041 @default.
- W4319928802 hasAuthorship W4319928802A5087644608 @default.
- W4319928802 hasAuthorship W4319928802A5090836249 @default.
- W4319928802 hasBestOaLocation W43199288021 @default.
- W4319928802 hasConcept C116834253 @default.
- W4319928802 hasConcept C119857082 @default.
- W4319928802 hasConcept C121608353 @default.
- W4319928802 hasConcept C124101348 @default.
- W4319928802 hasConcept C126322002 @default.
- W4319928802 hasConcept C142724271 @default.
- W4319928802 hasConcept C153180895 @default.
- W4319928802 hasConcept C154945302 @default.
- W4319928802 hasConcept C41008148 @default.
- W4319928802 hasConcept C50644808 @default.
- W4319928802 hasConcept C534262118 @default.
- W4319928802 hasConcept C59822182 @default.
- W4319928802 hasConcept C71924100 @default.
- W4319928802 hasConcept C86803240 @default.
- W4319928802 hasConcept C97931131 @default.
- W4319928802 hasConceptScore W4319928802C116834253 @default.
- W4319928802 hasConceptScore W4319928802C119857082 @default.