Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319938092> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W4319938092 endingPage "141a" @default.
- W4319938092 startingPage "141a" @default.
- W4319938092 abstract "Raman spectroscopy has been used as a powerful tool to identify biomolecules in various fundamental and clinical studies. In recent years, machine learning has been used in the spectroscopy field to extract the spectrum feature for biomolecule classification and recognition. However, few methods have been developed for the classification of non-preprocessed spectra of biomolecules. The main challenge to deal with the spectra is the weak signals, strong backgrounds, and high bio-complexity. In this study, we developed a method to classify the membrane protein behavior in a nanometer-thin bilayer after an activator was applied. First, we used data augmentation to solve the problem of the sparsity of our spectrum data. Second, we constructed a multiscale 1D-CNN model for the spectrum classification. The ability to capture spectral features at different scales with the multiscale 1D-CNN model can deal with the difficulty to classify spectra of the complex cell membrane system. Last, score-CAM was used for model visualization to explain which spectrum features were used for the classification. The results show that our proposed multiscale 1D-CNN can improve the model performance metrics of other conventional machine algorithms by 4% to 13%. In addition, the obtained heatmaps from score-CAM also provided reasonable interpretations for the classification results in the amide I and amide III spectrum regions. These results show that the method we developed can give a persuasive classification for target biomolecules and has the potential to be applied in the study of disease treatment and biochemical reactions." @default.
- W4319938092 created "2023-02-11" @default.
- W4319938092 creator A5032380209 @default.
- W4319938092 date "2023-02-01" @default.
- W4319938092 modified "2023-09-25" @default.
- W4319938092 title "Biomolecule classification by multiscale one-dimensional convolutional neural network" @default.
- W4319938092 doi "https://doi.org/10.1016/j.bpj.2022.11.925" @default.
- W4319938092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36782646" @default.
- W4319938092 hasPublicationYear "2023" @default.
- W4319938092 type Work @default.
- W4319938092 citedByCount "0" @default.
- W4319938092 crossrefType "journal-article" @default.
- W4319938092 hasAuthorship W4319938092A5032380209 @default.
- W4319938092 hasConcept C119857082 @default.
- W4319938092 hasConcept C153180895 @default.
- W4319938092 hasConcept C154945302 @default.
- W4319938092 hasConcept C171250308 @default.
- W4319938092 hasConcept C186060115 @default.
- W4319938092 hasConcept C192562407 @default.
- W4319938092 hasConcept C41008148 @default.
- W4319938092 hasConcept C49853544 @default.
- W4319938092 hasConcept C81363708 @default.
- W4319938092 hasConcept C86803240 @default.
- W4319938092 hasConceptScore W4319938092C119857082 @default.
- W4319938092 hasConceptScore W4319938092C153180895 @default.
- W4319938092 hasConceptScore W4319938092C154945302 @default.
- W4319938092 hasConceptScore W4319938092C171250308 @default.
- W4319938092 hasConceptScore W4319938092C186060115 @default.
- W4319938092 hasConceptScore W4319938092C192562407 @default.
- W4319938092 hasConceptScore W4319938092C41008148 @default.
- W4319938092 hasConceptScore W4319938092C49853544 @default.
- W4319938092 hasConceptScore W4319938092C81363708 @default.
- W4319938092 hasConceptScore W4319938092C86803240 @default.
- W4319938092 hasIssue "3" @default.
- W4319938092 hasLocation W43199380921 @default.
- W4319938092 hasLocation W43199380922 @default.
- W4319938092 hasOpenAccess W4319938092 @default.
- W4319938092 hasPrimaryLocation W43199380921 @default.
- W4319938092 hasRelatedWork W2748454020 @default.
- W4319938092 hasRelatedWork W2767651786 @default.
- W4319938092 hasRelatedWork W2912288872 @default.
- W4319938092 hasRelatedWork W2961085424 @default.
- W4319938092 hasRelatedWork W3021430260 @default.
- W4319938092 hasRelatedWork W3027997911 @default.
- W4319938092 hasRelatedWork W3181746755 @default.
- W4319938092 hasRelatedWork W4287776258 @default.
- W4319938092 hasRelatedWork W4306674287 @default.
- W4319938092 hasRelatedWork W564581980 @default.
- W4319938092 hasVolume "122" @default.
- W4319938092 isParatext "false" @default.
- W4319938092 isRetracted "false" @default.
- W4319938092 workType "article" @default.