Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319949132> ?p ?o ?g. }
- W4319949132 endingPage "107698" @default.
- W4319949132 startingPage "107698" @default.
- W4319949132 abstract "Deep Learning (DL) has been described as one of the key subfields of Artificial Intelligence (AI) that is transforming weed detection for site-specific weed management (SSWM). In the last demi-decade, DL techniques have been integrated with ground as well as aerial-based technologies to identify weeds in still image context and real-time setting. After observing the current research trend in DL-based weed detection, techniques are advancing by assisting precision weeding technologies to make smart decisions. Therefore, the objective of this paper was to present a systematic review study that involves DL-based weed detection techniques and technologies available for SSWM. To accomplish this study, a comprehensive literature survey was performed that consists of 60 closest technical papers on DL-based weed detection. The key findings are summarized as follows, a) transfer learning approach is a widely adopted technique to address weed detection in majority of research work, b) less focus navigated towards custom designed neural networks for weed detection task, c) based on the pretrained models deployed on test dataset, no one specific model can be attributed to have achieved high accuracy on multiple field images pertaining to several research studies, d) inferencing DL models on resource-constrained edge devices with limited number of dataset is lagging, e) different versions of YOLO (mostly v3) is a widely adopted model for detecting weeds in real-time scenario, f) SegNet and U-Net models have been deployed to accomplish semantic segmentation task in multispectral aerial imagery, g) less number of open-source weed image dataset acquired using drones, h) lack of research in exploring optimization and generalization techniques for weed identification in aerial images, i) research in exploring ways to design models that consume less training hours, low-power consumption and less parameters during training or inferencing, and j) slow-moving advances in optimizing models based on domain adaptation approach. In conclusion, this review will help researchers, DL experts, weed scientists, farmers, and technology extension specialist to gain updates in the area of DL techniques and technologies available for SSWM." @default.
- W4319949132 created "2023-02-11" @default.
- W4319949132 creator A5009017682 @default.
- W4319949132 creator A5015182080 @default.
- W4319949132 creator A5045824959 @default.
- W4319949132 creator A5056386995 @default.
- W4319949132 creator A5071569040 @default.
- W4319949132 creator A5071773009 @default.
- W4319949132 creator A5073436649 @default.
- W4319949132 date "2023-03-01" @default.
- W4319949132 modified "2023-10-16" @default.
- W4319949132 title "Applications of deep learning in precision weed management: A review" @default.
- W4319949132 cites W1200922351 @default.
- W4319949132 cites W1645840676 @default.
- W4319949132 cites W1973788747 @default.
- W4319949132 cites W1988341931 @default.
- W4319949132 cites W2010036662 @default.
- W4319949132 cites W2026622556 @default.
- W4319949132 cites W2026851943 @default.
- W4319949132 cites W2027534494 @default.
- W4319949132 cites W2029572886 @default.
- W4319949132 cites W2034005702 @default.
- W4319949132 cites W2052579783 @default.
- W4319949132 cites W2080091930 @default.
- W4319949132 cites W2081286693 @default.
- W4319949132 cites W2087263574 @default.
- W4319949132 cites W2089040011 @default.
- W4319949132 cites W2093020519 @default.
- W4319949132 cites W2098402059 @default.
- W4319949132 cites W2117539524 @default.
- W4319949132 cites W2147800946 @default.
- W4319949132 cites W2194775991 @default.
- W4319949132 cites W2312045099 @default.
- W4319949132 cites W2466520635 @default.
- W4319949132 cites W2475143380 @default.
- W4319949132 cites W2493316650 @default.
- W4319949132 cites W2501369945 @default.
- W4319949132 cites W2515194294 @default.
- W4319949132 cites W2520364485 @default.
- W4319949132 cites W2572303978 @default.
- W4319949132 cites W2586062600 @default.
- W4319949132 cites W2616728375 @default.
- W4319949132 cites W2620542418 @default.
- W4319949132 cites W2623946272 @default.
- W4319949132 cites W2735863559 @default.
- W4319949132 cites W2746564927 @default.
- W4319949132 cites W2752192487 @default.
- W4319949132 cites W2755766995 @default.
- W4319949132 cites W2767767563 @default.
- W4319949132 cites W2799973659 @default.
- W4319949132 cites W2803513103 @default.
- W4319949132 cites W2805267014 @default.
- W4319949132 cites W2810270273 @default.
- W4319949132 cites W2884001105 @default.
- W4319949132 cites W2886554959 @default.
- W4319949132 cites W2893308945 @default.
- W4319949132 cites W2900523806 @default.
- W4319949132 cites W2904067944 @default.
- W4319949132 cites W2908783980 @default.
- W4319949132 cites W2911284922 @default.
- W4319949132 cites W2915011392 @default.
- W4319949132 cites W2919115771 @default.
- W4319949132 cites W2940612399 @default.
- W4319949132 cites W2956274063 @default.
- W4319949132 cites W2957927798 @default.
- W4319949132 cites W2962782553 @default.
- W4319949132 cites W2962953743 @default.
- W4319949132 cites W2963037989 @default.
- W4319949132 cites W2966900272 @default.
- W4319949132 cites W2970422278 @default.
- W4319949132 cites W2984249216 @default.
- W4319949132 cites W2986154667 @default.
- W4319949132 cites W2988228695 @default.
- W4319949132 cites W2989236252 @default.
- W4319949132 cites W2993553533 @default.
- W4319949132 cites W2995382826 @default.
- W4319949132 cites W3000652771 @default.
- W4319949132 cites W3010345596 @default.
- W4319949132 cites W3010677011 @default.
- W4319949132 cites W3014484754 @default.
- W4319949132 cites W3015774841 @default.
- W4319949132 cites W3022353848 @default.
- W4319949132 cites W3023627953 @default.
- W4319949132 cites W3031965526 @default.
- W4319949132 cites W3035493214 @default.
- W4319949132 cites W3041133507 @default.
- W4319949132 cites W3042909640 @default.
- W4319949132 cites W3043487218 @default.
- W4319949132 cites W3044496128 @default.
- W4319949132 cites W3045780708 @default.
- W4319949132 cites W3047600962 @default.
- W4319949132 cites W3082499117 @default.
- W4319949132 cites W3084847787 @default.
- W4319949132 cites W3085719762 @default.
- W4319949132 cites W3086635719 @default.
- W4319949132 cites W3089529329 @default.
- W4319949132 cites W3093550513 @default.
- W4319949132 cites W3111188917 @default.