Matches in SemOpenAlex for { <https://semopenalex.org/work/W4319954093> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4319954093 abstract "The classical construction of the tensor product of modules, as a quotient of a free abelian group by a certain subgroup, is purely algebraic. The same is true for the left derived functors of the tensor product, the so called torsion products, that take values in the category of abelian groups. The traditional approach to the computation of torsion products involves a certain resolution of one of the arguments. Robinson gives a new interpretation of these groups by proving them to be the homotopy groups of a certain symmetric monoidal category. Later this approach was used by Retakh for Ext functors, and by Modawi for coproduct-preserving functors on a certain class of small categories. Mac Lane gives an explicit construction of Tor groups via the slide product of modules, and uses it to describe the multiple torsion products in the generalized Kunneth formulas by generators and relations. On the other hand, the zeroth right derived functor of a finitely presented functor can be expressed via its defect introduced by Auslander. Recently Martsinkovsky defined the defect for arbitrary additive functors on modules and showed that the defect and the contravariant Yoneda embedding form a right adjoint contravariant pair. We will discuss how derived functors (and torsion products, in particular) arise as weighted (co)limits and how derived functors of additive functors can be extended to profunctors, even for enriched categories. Next, we will examine a model for delooping of torsion and slide products, and use it to give a categorical description of the injective stabilization of the tensor product, introduced by Auslander and Bridger and recently developed by Martsinkovsky and Russell. We will extend the defect to arbitrary enriched profunctors, which will lead us to connections between the defect and Isbell duals and Janelidze satellites. We will also show that all concepts in category theory can be expressed as defects of profunctors, superseding Mac Lane's observation that all concepts are Kan extensions. Finally, we show how to define derived enriched functors. In particular, we recover the classical derived functors as the ones enriched in abelian groups.--Author's abstract" @default.
- W4319954093 created "2023-02-11" @default.
- W4319954093 creator A5007983076 @default.
- W4319954093 date "2023-02-10" @default.
- W4319954093 modified "2023-09-25" @default.
- W4319954093 title "Derived profunctors" @default.
- W4319954093 doi "https://doi.org/10.17760/d20467288" @default.
- W4319954093 hasPublicationYear "2023" @default.
- W4319954093 type Work @default.
- W4319954093 citedByCount "0" @default.
- W4319954093 crossrefType "dissertation" @default.
- W4319954093 hasAuthorship W4319954093A5007983076 @default.
- W4319954093 hasBestOaLocation W43199540931 @default.
- W4319954093 hasConcept C136119220 @default.
- W4319954093 hasConcept C141071460 @default.
- W4319954093 hasConcept C153778094 @default.
- W4319954093 hasConcept C156772000 @default.
- W4319954093 hasConcept C202444582 @default.
- W4319954093 hasConcept C206236147 @default.
- W4319954093 hasConcept C33464968 @default.
- W4319954093 hasConcept C33923547 @default.
- W4319954093 hasConcept C48808802 @default.
- W4319954093 hasConcept C51255310 @default.
- W4319954093 hasConcept C6778880 @default.
- W4319954093 hasConcept C71924100 @default.
- W4319954093 hasConcept C76069219 @default.
- W4319954093 hasConcept C77461463 @default.
- W4319954093 hasConcept C7879355 @default.
- W4319954093 hasConcept C99633028 @default.
- W4319954093 hasConceptScore W4319954093C136119220 @default.
- W4319954093 hasConceptScore W4319954093C141071460 @default.
- W4319954093 hasConceptScore W4319954093C153778094 @default.
- W4319954093 hasConceptScore W4319954093C156772000 @default.
- W4319954093 hasConceptScore W4319954093C202444582 @default.
- W4319954093 hasConceptScore W4319954093C206236147 @default.
- W4319954093 hasConceptScore W4319954093C33464968 @default.
- W4319954093 hasConceptScore W4319954093C33923547 @default.
- W4319954093 hasConceptScore W4319954093C48808802 @default.
- W4319954093 hasConceptScore W4319954093C51255310 @default.
- W4319954093 hasConceptScore W4319954093C6778880 @default.
- W4319954093 hasConceptScore W4319954093C71924100 @default.
- W4319954093 hasConceptScore W4319954093C76069219 @default.
- W4319954093 hasConceptScore W4319954093C77461463 @default.
- W4319954093 hasConceptScore W4319954093C7879355 @default.
- W4319954093 hasConceptScore W4319954093C99633028 @default.
- W4319954093 hasLocation W43199540931 @default.
- W4319954093 hasOpenAccess W4319954093 @default.
- W4319954093 hasPrimaryLocation W43199540931 @default.
- W4319954093 hasRelatedWork W1611975502 @default.
- W4319954093 hasRelatedWork W1809206118 @default.
- W4319954093 hasRelatedWork W1838766137 @default.
- W4319954093 hasRelatedWork W2118517576 @default.
- W4319954093 hasRelatedWork W2408525916 @default.
- W4319954093 hasRelatedWork W2486329378 @default.
- W4319954093 hasRelatedWork W2963886250 @default.
- W4319954093 hasRelatedWork W4297923622 @default.
- W4319954093 hasRelatedWork W4302592599 @default.
- W4319954093 hasRelatedWork W4319954093 @default.
- W4319954093 isParatext "false" @default.
- W4319954093 isRetracted "false" @default.
- W4319954093 workType "dissertation" @default.